Distributed项目中的Future对象Tokenization问题分析与解决方案
问题背景
在Distributed项目的最新开发过程中,测试用例test_dataframe_set_index_sync
在CI环境中持续失败,但在本地开发环境中却能正常通过。这个问题出现在项目切换到dask-expr后端之后,引起了开发团队的高度重视。
问题现象
测试失败表现为CancelledError异常,错误信息显示系统在处理('len-tree-b08e45d3088106d64c77136c41d6bd5b', 0)时被取消。通过日志分析发现,系统多次报告"User asked for computation on lost data",这表明计算依赖关系与实际计算图出现了不一致。
问题定位
经过深入调查,发现问题与以下因素相关:
-
测试执行顺序依赖性:当特定顺序执行测试时问题才会复现,特别是当包含ClickRunner的CLI测试与集合测试一起运行时。
-
dask-expr启用状态:当关闭dataframe.query-planning配置时,问题消失。
-
Future对象的Tokenization机制:问题的根本原因在于Future对象的tokenization实现方式。
根本原因分析
问题的核心在于Future对象的tokenization实现。当前实现使用[f.key, type(f)]
作为tokenization的依据,这种设计存在以下缺陷:
-
非唯一性问题:相同key和类型的Future对象会被视为相同,即使它们是不同的实例。
-
缓存污染:在测试重复执行时,新的Future对象会与旧的Future对象产生token冲突,导致系统错误地重用旧的表达式对象。
-
结果丢失:由于引用了旧的Future对象,调度器会立即丢弃新的计算结果。
解决方案
针对这个问题,开发团队提出了以下改进方向:
-
增强Tokenization唯一性:修改Future对象的tokenization实现,确保每个Future实例都能生成唯一的token。
-
隔离测试环境:确保测试之间不会共享状态,特别是涉及Future对象的部分。
-
优化缓存机制:重新评估对象去重策略,避免在不应共享的上下文中重用对象。
技术启示
这个案例给我们带来了几个重要的技术启示:
-
对象标识的重要性:在分布式系统中,对象的唯一标识设计至关重要,不当的设计可能导致难以追踪的问题。
-
测试环境隔离:复杂的分布式系统测试需要特别注意环境隔离,避免测试间的相互影响。
-
配置影响:系统配置(如dask-expr的启用状态)可能显著影响系统行为,需要在问题排查时充分考虑。
总结
这个问题的发现和解决过程展示了分布式系统开发中的典型挑战。通过深入分析tokenization机制,团队不仅解决了当前问题,也为系统未来的稳定性改进奠定了基础。这种对核心机制的深入理解是构建可靠分布式系统的关键。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









