Super-Gradients项目中YOLO模型超参数调优实践
2025-06-11 14:55:32作者:幸俭卉
超参数调优的重要性
在目标检测任务中,模型性能很大程度上取决于超参数的选择。以VinBigdata医学影像异常检测为例,使用YOLO-NAS-M模型训练200个epoch后mAP@0.5达到0.31,而YOLOv8仅训练20个epoch就获得了0.291的mAP@0.5。这一结果差异可能源于超参数设置的差异,凸显了超参数调优的重要性。
当前超参数配置分析
在Super-Gradients项目中,典型的训练参数配置包含多个关键组件:
- 学习率调度:采用余弦退火学习率调度器(CosineLRScheduler),初始学习率设为1e-3,最终学习率比为0.1
- 优化器:使用AdamW优化器,权重衰减设为0.00001
- 预热策略:线性批次学习率预热(LinearBatchLRWarmup),预热初始学习率为1e-5,预热步数1000
- 模型平均:启用指数移动平均(EMA),衰减率为0.997
- 混合精度训练:开启以加速训练
- 损失函数:使用PPYoloELoss
- 评估指标:基于mAP@0.50的检测指标
手动网格搜索实现方法
虽然Super-Gradients目前不提供内置的网格搜索功能,但开发者可以通过以下方式实现:
基础循环实现
for lr in [1e-5, 1e-4, 1e-3]:
train_params = {
...,
"initial_lr": lr,
...
}
trainer = Trainer(...)
trainer.train(..., train_params=train_params)
这种方法简单直接,适合小规模参数组合的搜索。
基于Hydra的高级配置
对于更复杂的超参数搜索,可以结合Hydra配置管理系统:
python train.py -m --config-name YOUR_RECIPE.YAML training_hyperparams.initial_lr=1e-3,1e-4,1e-5
这种方法可以同时搜索多个超参数组合,适合大规模实验。
超参数调优建议
- 学习率探索:建议从[1e-5, 1e-4, 1e-3]范围开始尝试
- 批量大小调整:根据GPU内存适当调整batch_accumulate参数
- 预热策略:可以尝试不同的预热epoch数(3-5)和预热步数
- 权重衰减:在[0.0001, 0.00001]范围内测试不同值
- EMA参数:测试不同的衰减率(0.99-0.999)
性能优化技巧
- 早停机制:监控验证集mAP,设置合理的早停条件
- 混合精度:确保开启混合精度训练以加速过程
- 数据增强:适当调整数据增强策略可能比超参数调优更有效
- 模型选择:不同YOLO架构对超参数敏感度不同,需要分别调优
通过系统化的超参数搜索和优化,可以显著提升目标检测模型在医学影像等专业领域的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895