PyKAN项目中模型训练结果不一致问题的技术分析
在PyKAN项目使用过程中,用户报告了一个关于模型训练结果不一致的问题。当运行hellokan.ipynb示例文件时,使用较新版本的Python环境(特别是PyTorch 2.3.0)会导致训练损失值、测试损失值和正则化项与示例文件中展示的结果存在差异。
问题现象
在Python 3.12.3环境下,使用较新版本的依赖包(包括PyTorch 2.3.0)运行hellokan.ipynb时,从第4个训练单元开始,观察到的指标值与示例文件中的参考值存在明显差异:
- 训练损失:0.119(参考值0.115)
- 测试损失:0.125(参考值0.121)
- 正则化项:28.1(参考值25)
最终生成的符号表达式也与示例中期望的exp(sin(πx) + y²)形式不符,而是产生了更为复杂的表达式。
问题原因分析
经过技术验证,这个问题主要源于以下几个方面:
-
PyTorch版本差异:PyTorch 2.3.0与示例使用的2.2版本在优化器实现和随机数生成方面可能存在细微差异,这会影响模型训练的收敛速度和最终结果。
-
训练迭代次数不足:在新版本环境下,模型可能需要更多训练轮次才能达到相同的收敛程度。用户验证发现,通过多次重新运行训练单元,最终能够获得与示例相似的结果。
-
随机初始化影响:神经网络权重的随机初始化在不同PyTorch版本中可能采用不同的策略,这会导致训练起点不同,进而影响最终结果。
解决方案与建议
针对这一问题,我们提出以下解决方案:
-
增加训练轮次:在新版本环境下,可以适当增加训练轮次或降低学习率,确保模型充分收敛。
-
版本控制:对于需要精确复现结果的场景,建议使用与示例完全相同的软件版本环境。
-
结果验证方法:不应仅比较中间指标值,而应关注最终生成的符号表达式是否符合预期功能。
-
文档补充:在示例文件中明确说明训练可能需要多次运行或调整超参数,特别是在不同软件版本下。
技术启示
这一案例反映了深度学习项目开发中几个重要原则:
-
版本兼容性:深度学习框架的版本更新可能带来算法实现的细微变化,这些变化会影响模型训练过程和结果。
-
结果可复现性:在开源项目中,应尽可能锁定依赖版本,或提供版本兼容性说明。
-
训练监控:不应仅依赖预设的训练轮次,而应根据实际收敛情况动态调整。
-
容错设计:示例代码应考虑不同环境下的表现差异,提供必要的容错和调整机制。
通过这一问题的分析和解决,PyKAN项目可以进一步完善其文档和示例设计,提升用户在不同环境下的使用体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00