PyKAN项目中模型训练结果不一致问题的技术分析
在PyKAN项目使用过程中,用户报告了一个关于模型训练结果不一致的问题。当运行hellokan.ipynb示例文件时,使用较新版本的Python环境(特别是PyTorch 2.3.0)会导致训练损失值、测试损失值和正则化项与示例文件中展示的结果存在差异。
问题现象
在Python 3.12.3环境下,使用较新版本的依赖包(包括PyTorch 2.3.0)运行hellokan.ipynb时,从第4个训练单元开始,观察到的指标值与示例文件中的参考值存在明显差异:
- 训练损失:0.119(参考值0.115)
- 测试损失:0.125(参考值0.121)
- 正则化项:28.1(参考值25)
最终生成的符号表达式也与示例中期望的exp(sin(πx) + y²)形式不符,而是产生了更为复杂的表达式。
问题原因分析
经过技术验证,这个问题主要源于以下几个方面:
-
PyTorch版本差异:PyTorch 2.3.0与示例使用的2.2版本在优化器实现和随机数生成方面可能存在细微差异,这会影响模型训练的收敛速度和最终结果。
-
训练迭代次数不足:在新版本环境下,模型可能需要更多训练轮次才能达到相同的收敛程度。用户验证发现,通过多次重新运行训练单元,最终能够获得与示例相似的结果。
-
随机初始化影响:神经网络权重的随机初始化在不同PyTorch版本中可能采用不同的策略,这会导致训练起点不同,进而影响最终结果。
解决方案与建议
针对这一问题,我们提出以下解决方案:
-
增加训练轮次:在新版本环境下,可以适当增加训练轮次或降低学习率,确保模型充分收敛。
-
版本控制:对于需要精确复现结果的场景,建议使用与示例完全相同的软件版本环境。
-
结果验证方法:不应仅比较中间指标值,而应关注最终生成的符号表达式是否符合预期功能。
-
文档补充:在示例文件中明确说明训练可能需要多次运行或调整超参数,特别是在不同软件版本下。
技术启示
这一案例反映了深度学习项目开发中几个重要原则:
-
版本兼容性:深度学习框架的版本更新可能带来算法实现的细微变化,这些变化会影响模型训练过程和结果。
-
结果可复现性:在开源项目中,应尽可能锁定依赖版本,或提供版本兼容性说明。
-
训练监控:不应仅依赖预设的训练轮次,而应根据实际收敛情况动态调整。
-
容错设计:示例代码应考虑不同环境下的表现差异,提供必要的容错和调整机制。
通过这一问题的分析和解决,PyKAN项目可以进一步完善其文档和示例设计,提升用户在不同环境下的使用体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~056CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









