Django-Jinja 使用教程
2024-08-19 10:18:41作者:盛欣凯Ernestine
项目介绍
Django-Jinja 是一个简单且不侵入的 Jinja2 模板引擎与 Django 框架的集成项目。它允许开发者在 Django 项目中使用 Jinja2 模板,从而享受 Jinja2 的强大功能和灵活性。该项目由 Andrey Antukh 维护,支持 Django 3.2 及以上版本,并且遵循 BSD-3-Clause 许可证。
项目快速启动
安装 Django-Jinja
首先,使用 pip 安装 Django-Jinja:
pip install django-jinja
配置 Django 项目
在 Django 项目的 settings.py 文件中,添加 django_jinja 到 INSTALLED_APPS:
INSTALLED_APPS = [
...
'django_jinja',
...
]
然后,配置模板引擎:
TEMPLATES = [
{
"BACKEND": "django_jinja.backend.Jinja2",
"APP_DIRS": True,
"OPTIONS": {
"match_extension": ".jinja",
"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
],
}
},
{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"APP_DIRS": True,
}
]
创建 Jinja2 模板
在应用的模板目录中创建一个 .jinja 扩展名的模板文件,例如 index.html.jinja:
<!DOCTYPE html>
<html>
<head>
<title>Django-Jinja 示例</title>
</head>
<body>
<h1>欢迎使用 Django-Jinja</h1>
</body>
</html>
运行 Django 项目
启动 Django 开发服务器:
python manage.py runserver
访问相应的 URL,你应该能看到渲染的 Jinja2 模板。
应用案例和最佳实践
应用案例
Django-Jinja 适用于需要高度定制和灵活性的项目,特别是在以下场景中:
- 复杂的前端逻辑:Jinja2 提供了强大的模板继承和宏功能,适合处理复杂的前端逻辑。
- 高性能需求:Jinja2 的渲染速度通常比 Django 内置模板引擎更快。
最佳实践
- 模板组织:合理组织模板文件,使用模板继承和包含来减少重复代码。
- 上下文处理器:利用 Django 的上下文处理器来传递常用变量到模板中。
- 性能优化:使用 Jinja2 的缓存功能来提高模板渲染性能。
典型生态项目
Django-Jinja 可以与以下生态项目结合使用,以增强功能和性能:
- Django REST Framework:结合使用可以提供更灵活的前端渲染选项。
- Whitenoise:用于静态文件服务,提高性能。
- Celery:用于异步任务处理,提升应用响应速度。
通过这些集成,可以构建出高效、灵活且功能丰富的 Django 应用。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26