MixText 使用指南
项目概述
MixText 是一个基于半监督学习的文本分类框架,由论文《MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification》提出。该框架利用了特定的数据增强策略(TMix),在隐藏空间中进行文本插值,并通过未标记数据的低熵标签猜测来提升模型性能。项目托管在 GitHub 上,地址为 https://github.com/GT-SALT/MixText。
项目目录结构及介绍
MixText 的目录结构清晰地组织了代码和数据资源:
MixText/
│
├── data/ # 数据相关文件夹,包含原始和预处理后的数据集
│ ├── yahoo_answers_csv/ # 针对Yahoo Answers的数据处理
│ ├── ... # 其它数据集文件夹
│ ├── back_translate.ipynb # 使用Jupyter Notebook进行数据回译的示例
│ └── ... # 其他数据处理脚本或备份数据
│
├── code/ # 核心源代码
│ ├── transformers/ # 基于Hugging Face的Transformers库的自定义代码
│ ├── read_data.py # 读取数据、准备训练集、验证集和测试集的脚本
│ ├── normal_bert.py # BERT基线模型代码
│ ├── normal_train.py # 训练BERT基线模型的脚本
│ ├── mixtext.py # MixText模型核心实现
│ └── train.py # 模型训练与评估主程序
│
├── LICENSE # 开源许可协议
└── README.md # 项目说明文档
启动文件介绍
主要启动文件:train.py
-
作用:
train.py是项目的核心运行脚本,支持训练 MixText 和 TMix 模型。它允许用户通过命令行参数指定不同的设置,如GPU使用、标注样本数、批量大小等,从而进行模型的训练和测试。 -
如何启动: 用户可以通过以下命令启动训练过程,以MixText模型为例:
python train.py --gpu 0 1 2 3 --n-labeled 10 \ --data-path ./data/yahoo_answers_csv/ \ --batch-size 4 --batch-size-u 8 --epochs 20 \ --lambda-u 1 --T 0.5 --alpha 16 --mix-layers-set 7 9 12 \ --lrmain 0.000005 --lrlast 0.0005
配置文件介绍
注意:虽然直接的配置文件(如.ini或.yaml)在提供的链接中并未明确指出,但项目通过命令行参数实现了高度配置化。
-
命令行参数作为配置: MixText通过命令行参数来配置训练流程,包括但不限于GPU的选择(
--gpu)、标注数据的数量(--n-labeled)、数据路径(--data-path)、批量大小(--batch-size,--batch-size-u用于未标注数据)、训练轮次(--epochs)、以及其他模型特异性参数(如混合层设置--mix-layers-set、权重项--lambda-u等)。 -
定制化配置: 用户可以在调用
train.py时,根据实际需求调整这些参数,从而实现无需直接编辑配置文件的灵活配置。
此文档提供了快速入门MixText所需的基础知识,详细的学习和实验还需参考项目中的具体说明和示例代码。记得在尝试之前确保满足所有必要的软件依赖,例如Python版本、PyTorch、Transformer库等。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00