解决MSWJS项目中"instanceof右侧不是对象"的错误
在使用MSWJS(Mock Service Worker)进行前端测试时,开发者可能会遇到一个棘手的TypeError错误:"Right-hand side of 'instanceof' is not an object"。这个错误通常发生在Node.js环境下运行测试时,特别是在升级到较新版本的MSW后。
错误背景
这个错误源于JavaScript的instanceof操作符需要右侧是一个有效的构造函数或类。当Node.js环境中缺少某些Web API的polyfill时,MSW在尝试创建模拟响应对象时会抛出这个错误。
根本原因
问题的核心在于Node.js环境缺少浏览器中常见的Web API实现,特别是:
- TextEncoder/TextDecoder API
- Streams API(特别是ReadableStream和TransformStream)
- Fetch API及其相关对象(Response, Request等)
完整解决方案
要彻底解决这个问题,需要在测试设置文件中添加所有必要的polyfill。以下是完整的解决方案:
/**
* Node.js全局polyfill配置
* 这些必须在特定顺序下require,因为"undici"依赖"TextEncoder"全局API
*/
const { TextDecoder, TextEncoder } = require('node:util');
const { ReadableStream, TransformStream } = require('node:stream/web');
Object.defineProperties(globalThis, {
TextDecoder: { value: TextDecoder },
TextEncoder: { value: TextEncoder },
ReadableStream: { value: ReadableStream },
TransformStream: { value: TransformStream },
});
const { Blob, File } = require('node:buffer');
const { fetch, Headers, FormData, Request, Response } = require('undici');
Object.defineProperties(globalThis, {
fetch: { value: fetch, writable: true },
Blob: { value: Blob },
File: { value: File },
Headers: { value: Headers },
FormData: { value: FormData },
Request: { value: Request },
Response: { value: Response },
});
关键点说明
-
模块导入顺序很重要:必须先导入TextEncoder/TextDecoder,再导入其他API
-
正确的导入路径:
- Stream相关API必须从'node:stream/web'导入
- 工具类API从'node:util'导入
- Blob等从'node:buffer'导入
-
全局挂载:使用Object.defineProperties将这些API挂载到globalThis上
-
完整API集合:解决方案中包含了所有必要的Web API polyfill,包括:
- 文本编码/解码API
- 流处理API
- Fetch API及其相关对象
- 二进制数据处理API
为什么需要这些polyfill
MSW在Node.js环境下运行时,需要模拟浏览器环境中的许多Web API。较新版本的MSW对运行环境有更严格的要求,需要完整的Web API支持才能正确创建模拟请求和响应对象。缺少任何一个关键API都可能导致类型检查失败,从而出现"instanceof右侧不是对象"的错误。
替代方案
如果觉得维护这些polyfill比较复杂,可以考虑:
- 使用更现代的测试运行器(如Vitest),它们对Web API有更好的内置支持
- 使用jsdom环境运行测试,它提供了更完整的浏览器API模拟
总结
通过正确配置所有必要的Web API polyfill,可以彻底解决MSWJS在Node.js测试环境中出现的"instanceof"类型错误。这个解决方案已经被多位开发者验证有效,适用于大多数使用MSW进行前端测试的场景。关键在于确保测试环境拥有所有必需的浏览器API实现,并按照正确的顺序加载它们。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00