Keycloakify项目Storybook启动问题分析与解决方案
问题背景
在使用Keycloakify项目时,开发者可能会遇到"sh: 1: storybook: not found"的错误提示。这个问题通常出现在尝试运行Storybook开发服务器时,表明系统无法找到Storybook命令。
问题分析
经过对多个案例的研究,我们发现这个问题通常由以下几个原因导致:
- 依赖未正确安装:项目依赖没有完整安装,特别是Storybook相关依赖
- 包管理器冲突:项目中同时存在yarn.lock和package-lock.json文件
- 环境配置问题:Node.js或包管理器版本不兼容
- Docker环境限制:在容器环境中运行存在特定限制
解决方案
基础解决方案
-
确保依赖完整安装:
rm -rf node_modules rm yarn.lock # 如果使用yarn rm package-lock.json # 如果使用npm yarn install # 或 npm install -
检查包管理器一致性: 避免混合使用yarn和npm,选择一种包管理器并保持一致。
-
验证环境版本: Keycloakify项目支持大多数现代Node.js版本,但建议使用LTS版本:
node -v # 推荐v16.x或v18.x npm -v # 推荐6.x或更高 yarn -v # 推荐1.22.x或更高
高级解决方案
对于在Docker环境中运行的情况:
-
Dockerfile优化:
FROM node:18 WORKDIR /app COPY package.json yarn.lock ./ RUN yarn install COPY . . EXPOSE 6006 CMD ["yarn", "storybook"] -
避免容器化开发限制: 注意在容器中无法使用某些Keycloakify CLI命令,如
npx keycloakify start-keycloak,因为需要Docker-in-Docker支持。
常见误区
-
手动安装缺失依赖: 开发者可能会尝试手动安装vite或@vitejs/plugin-react等依赖,但实际上应该通过完整的
yarn install或npm install来解决依赖问题。 -
忽略peerDependencies警告: 虽然peerDependencies警告通常不会阻止程序运行,但大量警告可能表明安装过程存在问题。
最佳实践
-
开发环境准备:
- 使用nvm管理Node.js版本
- 选择单一包管理器(yarn或npm)并坚持使用
- 定期清理node_modules和lock文件
-
故障排查步骤:
- 检查控制台完整错误输出
- 验证依赖是否完整安装
- 尝试在不同环境中重现问题
-
项目结构理解: Keycloakify基于Vite构建,了解Vite的基本工作原理有助于解决问题。
总结
Keycloakify项目中的Storybook启动问题通常与环境配置相关,而非项目本身缺陷。通过系统性地检查依赖安装、环境版本和配置一致性,大多数情况下可以快速解决问题。对于复杂环境,考虑简化开发环境或寻求社区支持是明智的选择。
记住,前端开发环境的稳定性是高效开发的基础,投入时间建立可靠的开发环境将带来长期的回报。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00