SuGaR项目自定义数据集构建与解析指南
2025-06-29 09:40:20作者:鲍丁臣Ursa
概述
本文详细介绍了如何为SuGaR项目(3D高斯曲面重建技术)构建和解析自定义数据集的方法。SuGaR作为基于高斯泼溅(Gaussian Splatting)技术的3D重建项目,对输入数据有特定要求,正确的数据准备流程对最终重建效果至关重要。
相机选择与拍摄建议
相机设备选择
- 推荐使用专业级数码单反相机或高质量无反相机
- 避免使用广角镜头(如GoPro),建议焦距不小于18mm
- 优先选择可调节光圈的设备,以便获得更大景深
拍摄参数设置
- 使用尽可能高的f-stop值(小光圈)确保场景全面清晰对焦
- 保持曝光参数一致,避免自动模式导致的光照变化
- 建议使用RAW格式拍摄以获得更高画质
拍摄技巧
-
物体拍摄:
- 围绕物体进行3-4圈不同高度的拍摄
- 每圈包含30-40张照片
- 包括平视、俯视和仰视角度
-
场景拍摄:
- 确保相邻照片有至少50%重叠区域(推荐70%)
- 采用连续移动方式拍摄,避免角度跳跃
- 对于大场景,可采用网格化拍摄方式
视频素材处理流程
对于视频素材,需要先进行帧提取处理:
-
创建项目目录结构:
project_folder/ ├── ffmpeg.exe ├── input_video.mp4 └── input/ (空目录) -
使用ffmpeg提取关键帧:
ffmpeg -ss 00:00:00 -t 00:02:46 -i input_video.mp4 -r 1.0 input/%004d.jpg-r参数控制帧率(1.0=每秒1帧)- 根据视频长度调整
-t参数
-
图像后处理:
- 使用Topaz或DarkTable等软件进行锐化处理
- 保持图像分辨率一致
- 建议进行色彩校正和白平衡统一
数据集目录结构与转换
项目目录规范
SuGaR/
└── data/
└── project_name/
├── input/ (包含所有源图像)
└── (其他自动生成的目录)
数据转换流程
-
运行转换命令:
python gaussian_splatting/convert.py -s data/project_name -
转换后目录结构:
project_name/ ├── distorted/ ├── images/ ├── input/ ├── sparse/ ├── stereo/ ├── run-colmap-geometric └── run-colmap-photometric -
训练模型:
python gaussian_splatting/train.py -s data/project_name
输出文件说明
训练完成后,在output/good目录下将生成:
- Point_cloud/:点云数据
- cameras.json:相机参数文件
- cfg_args:配置文件
- input.ply:3D模型文件
常见问题解决方案
-
点云文件缺失问题:
- 确保COLMAP处理步骤完整执行
- 检查图像特征匹配质量
- 验证相机参数是否正确
-
重建质量优化:
- 增加拍摄图像数量和角度覆盖
- 提高图像分辨率和清晰度
- 确保场景有足够的纹理特征
-
数据处理技巧:
- 对低光照图像进行适当增强
- 移除动态物体和模糊帧
- 保持场景光照一致性
通过遵循上述流程和技巧,用户可以成功构建适用于SuGaR项目的高质量自定义数据集,为后续的3D高斯曲面重建奠定良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258