Conductor 开源项目教程
2024-09-14 01:50:24作者:秋阔奎Evelyn
项目介绍
Conductor 是一个开源的工作流编排和调度引擎,由 Netflix 开发并开源。它主要用于管理和编排微服务架构中的复杂工作流。Conductor 提供了一个强大的 API 和可视化界面,使得开发者可以轻松地定义、运行和管理复杂的工作流。
Conductor 的核心功能包括:
- 工作流定义:支持通过 JSON 或 YAML 定义工作流。
- 任务调度:自动调度任务,支持并行和串行执行。
- 错误处理:内置错误处理机制,支持重试和补偿操作。
- 可视化:提供工作流的可视化界面,方便监控和管理。
- 扩展性:支持自定义任务和插件,方便扩展功能。
项目快速启动
环境准备
在开始之前,请确保你已经安装了以下工具:
- Java 8 或更高版本
- Maven 3.x
- Git
克隆项目
首先,克隆 Conductor 项目到本地:
git clone https://github.com/conductor-oss/conductor.git
cd conductor
构建项目
使用 Maven 构建项目:
mvn clean install
启动 Conductor 服务器
构建完成后,启动 Conductor 服务器:
java -jar server/build/libs/conductor-server-*-all.jar
默认情况下,Conductor 服务器会在 http://localhost:8080 上运行。
创建一个简单的工作流
以下是一个简单的 JSON 格式的工作流定义:
{
"name": "sample_workflow",
"description": "A sample workflow",
"version": 1,
"tasks": [
{
"name": "task_1",
"taskReferenceName": "task_1",
"type": "SIMPLE",
"inputParameters": {}
},
{
"name": "task_2",
"taskReferenceName": "task_2",
"type": "SIMPLE",
"inputParameters": {}
}
],
"outputParameters": {}
}
将上述 JSON 保存为 sample_workflow.json,然后通过 API 创建工作流:
curl -X POST http://localhost:8080/api/metadata/workflow -H 'Content-Type: application/json' -d @sample_workflow.json
运行工作流
创建工作流后,可以通过以下命令启动工作流实例:
curl -X POST http://localhost:8080/api/workflow/sample_workflow -H 'Content-Type: application/json' -d '{}'
应用案例和最佳实践
应用案例
Conductor 在 Netflix 内部被广泛用于管理和编排复杂的微服务工作流。例如,Netflix 使用 Conductor 来管理视频处理、推荐系统更新、用户数据同步等任务。
最佳实践
- 模块化设计:将复杂的工作流拆分为多个小任务,每个任务负责一个独立的业务逻辑。
- 错误处理:为每个任务定义错误处理策略,确保工作流在遇到错误时能够自动重试或补偿。
- 监控和日志:使用 Conductor 提供的监控和日志功能,实时跟踪工作流的执行情况。
- 版本控制:为工作流定义版本号,方便在生产环境中进行版本管理和回滚。
典型生态项目
Netflix OSS 生态
Conductor 是 Netflix OSS 生态系统的一部分,与以下项目紧密集成:
- Eureka:服务发现和注册中心。
- Ribbon:客户端负载均衡器。
- Hystrix:服务容错和断路器。
- Zuul:API 网关。
其他开源项目
Conductor 还可以与其他开源项目集成,例如:
- Kafka:用于任务队列和消息传递。
- Elasticsearch:用于日志和监控数据的存储和查询。
- Prometheus:用于监控和报警。
通过这些集成,Conductor 可以构建一个完整的微服务架构解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140