Sidekiq自定义日志格式化器保留启动Logo的实现方法
在使用Sidekiq进行后台任务处理时,许多开发者都喜欢看到Sidekiq启动时显示的那个酷炫ASCII艺术Logo。然而,当我们需要自定义日志格式时,这个Logo可能会消失。本文将深入探讨如何在不丢失Sidekiq启动Logo的情况下实现自定义日志格式。
问题背景
Sidekiq默认会在启动时输出一个精美的ASCII艺术Logo,这不仅是Sidekiq的标志性特征,也为开发者提供了直观的启动确认。但当开发者按照官方文档实现自定义日志格式化器时,这个Logo往往会消失不见。
自定义日志格式化器的标准实现
通常,开发者会按照以下方式实现自定义日志格式化器:
module Sidekiq
class Logger < ::Logger
module Formatters
class CustomFormatter < Base
def call(severity, time, program_name, message)
# 自定义日志格式实现
end
end
end
end
end
这种实现虽然能够正常工作,但会导致Sidekiq启动时不再显示Logo。这是因为Logo的显示逻辑与日志格式化器紧密相关。
解决方案:继承Pretty类而非Base类
经过深入分析Sidekiq源码,我们发现更优的解决方案是让自定义格式化器继承自Pretty类而非Base类:
module Sidekiq
class Logger < ::Logger
module Formatters
class CustomFormatter < Pretty
def call(severity, time, program_name, message)
# 自定义日志格式实现
end
end
end
end
end
技术原理
Pretty类是Sidekiq专门为美化日志输出而设计的格式化器基类,它不仅包含了基本的日志格式化功能,还保留了Logo显示的相关逻辑。相比之下,Base类是一个更基础的格式化器,不包含这些Sidekiq特有的功能。
实现建议
-
保留原有功能:通过继承
Pretty类,可以确保所有Sidekiq特有的日志功能(包括启动Logo)都能正常工作 -
灵活定制:在自定义格式化器中,开发者仍然可以完全控制日志的最终输出格式
-
上下文信息:可以在格式化器中方便地访问Sidekiq的上下文信息,如任务参数等
最佳实践
对于需要在Sidekiq日志中添加额外信息的场景,建议采用以下模式:
Sidekiq.configure_server do |config|
# 添加上下文信息
Sidekiq::JobLogger.prepend(YourCustomContextModule)
# 使用继承自Pretty的自定义格式化器
config.logger.formatter = Sidekiq::Logger::Formatters::CustomFormatter.new
end
这种方法既保留了Sidekiq的所有原生特性,又允许开发者灵活地扩展日志功能。
总结
通过继承Pretty类而非Base类来实现自定义日志格式化器,开发者可以在享受Sidekiq所有原生功能(包括启动Logo)的同时,完全控制日志的输出格式。这种方案既简单又有效,是Sidekiq日志定制的最佳实践之一。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00