Sidekiq自定义日志格式化器保留启动Logo的实现方法
在使用Sidekiq进行后台任务处理时,许多开发者都喜欢看到Sidekiq启动时显示的那个酷炫ASCII艺术Logo。然而,当我们需要自定义日志格式时,这个Logo可能会消失。本文将深入探讨如何在不丢失Sidekiq启动Logo的情况下实现自定义日志格式。
问题背景
Sidekiq默认会在启动时输出一个精美的ASCII艺术Logo,这不仅是Sidekiq的标志性特征,也为开发者提供了直观的启动确认。但当开发者按照官方文档实现自定义日志格式化器时,这个Logo往往会消失不见。
自定义日志格式化器的标准实现
通常,开发者会按照以下方式实现自定义日志格式化器:
module Sidekiq
class Logger < ::Logger
module Formatters
class CustomFormatter < Base
def call(severity, time, program_name, message)
# 自定义日志格式实现
end
end
end
end
end
这种实现虽然能够正常工作,但会导致Sidekiq启动时不再显示Logo。这是因为Logo的显示逻辑与日志格式化器紧密相关。
解决方案:继承Pretty类而非Base类
经过深入分析Sidekiq源码,我们发现更优的解决方案是让自定义格式化器继承自Pretty类而非Base类:
module Sidekiq
class Logger < ::Logger
module Formatters
class CustomFormatter < Pretty
def call(severity, time, program_name, message)
# 自定义日志格式实现
end
end
end
end
end
技术原理
Pretty类是Sidekiq专门为美化日志输出而设计的格式化器基类,它不仅包含了基本的日志格式化功能,还保留了Logo显示的相关逻辑。相比之下,Base类是一个更基础的格式化器,不包含这些Sidekiq特有的功能。
实现建议
-
保留原有功能:通过继承
Pretty类,可以确保所有Sidekiq特有的日志功能(包括启动Logo)都能正常工作 -
灵活定制:在自定义格式化器中,开发者仍然可以完全控制日志的最终输出格式
-
上下文信息:可以在格式化器中方便地访问Sidekiq的上下文信息,如任务参数等
最佳实践
对于需要在Sidekiq日志中添加额外信息的场景,建议采用以下模式:
Sidekiq.configure_server do |config|
# 添加上下文信息
Sidekiq::JobLogger.prepend(YourCustomContextModule)
# 使用继承自Pretty的自定义格式化器
config.logger.formatter = Sidekiq::Logger::Formatters::CustomFormatter.new
end
这种方法既保留了Sidekiq的所有原生特性,又允许开发者灵活地扩展日志功能。
总结
通过继承Pretty类而非Base类来实现自定义日志格式化器,开发者可以在享受Sidekiq所有原生功能(包括启动Logo)的同时,完全控制日志的输出格式。这种方案既简单又有效,是Sidekiq日志定制的最佳实践之一。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00