ComfyUI-WanVideoWrapper 自定义节点安装问题排查指南
问题现象分析
在使用 ComfyUI-WanVideoWrapper 项目时,用户遇到了自定义节点无法正常加载的问题。从日志分析来看,系统启动时并未显示该节点的加载信息,而其他自定义节点如 ComfyUI-Manager 和 ComfyUI-Impact-Pack 则正常加载。
常见安装问题排查
-
目录结构验证
确保克隆的仓库正确放置在 ComfyUI 的 custom_nodes 目录下。正确的路径应为/workspace/ComfyUI/custom_nodes/ComfyUI-WanVideoWrapper(或本地对应路径)。注意不要保留 GitHub 自动添加的-main后缀。 -
文件权限检查
在 Linux 环境下,需要确认节点文件具有可执行权限。可以通过ls -l命令查看文件权限,必要时使用chmod命令调整。 -
依赖项安装
某些自定义节点需要额外的 Python 依赖包。虽然本例中未显示相关错误,但建议检查项目文档是否有特殊依赖要求,并通过 pip 安装。 -
命名冲突排查
避免节点文件夹名称中包含特殊字符或空格,这可能导致 Python 导入失败。保持名称简洁,仅使用字母、数字和下划线。
解决方案验证
用户最终通过完全重启 ComfyUI 实例解决了问题。这表明:
-
缓存影响
ComfyUI 可能缓存了自定义节点列表,重启可以强制重新扫描和加载所有节点。 -
热重载限制
某些情况下,直接添加新节点而不重启服务可能导致节点未被正确识别。 -
环境一致性
重启确保了所有环境变量和路径设置被正确初始化。
最佳实践建议
-
标准化安装流程
- 克隆仓库到 custom_nodes 目录
- 确认文件夹命名规范
- 检查并安装所需依赖
- 完全重启 ComfyUI 服务
-
日志监控
启动时关注控制台输出的"Import times for custom nodes"部分,确认目标节点出现在列表中。 -
测试验证
安装后立即检查节点是否出现在 ComfyUI 的节点列表中,或尝试通过搜索功能定位。 -
环境隔离
考虑使用虚拟环境管理 Python 依赖,避免不同项目间的包冲突。
通过系统化的排查方法和标准化的安装流程,可以显著提高自定义节点部署的成功率。本例也提醒我们,有时最简单的解决方案(如完全重启)可能是最有效的。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00