EasyEdit项目中IKE方法在WikiCounterFact数据集上的应用与问题解决
2025-07-03 10:22:57作者:盛欣凯Ernestine
背景介绍
EasyEdit是一个用于大型语言模型知识编辑的开源项目,其中IKE(Internal Knowledge Editing)是一种重要的编辑方法。最近在将IKE方法应用于WikiCounterFact数据集时,开发者遇到了一些技术挑战。
核心问题分析
在使用IKE方法处理WikiCounterFact数据集时,主要出现了两个关键问题:
-
数据格式不兼容:WikiCounterFact数据集的结构与IKE方法预期的数据结构存在差异,特别是缺少'locality_prompt'等关键字段。
-
预处理缺失:IKE方法需要预先使用SentenceTransformer模型生成知识嵌入存储文件(.pkl),但原流程中缺少这一关键步骤。
解决方案实现
针对上述问题,项目团队提供了完整的解决方案:
1. 数据格式适配
对于WikiCounterFact数据集,需要确保数据包含以下关键字段:
- prompt:编辑提示
- target_new:新目标知识
- rephrase_prompt:改写提示
- locality_prompt:局部性提示
- locality_ground_truth:局部性真实值
2. 知识嵌入预处理
使用以下代码生成必要的知识嵌入文件:
from easyeditor import IKEHyperParams, KnowEditDataset
from easyeditor.models.ike import encode_ike_facts
from sentence_transformers import SentenceTransformer
# 初始化参数和模型
hparams = IKEHyperParams.from_hparams('./hparams/IKE/llama-7b.yaml')
train_ds = KnowEditDataset('/path/to/train_cf.json')
sentence_model = SentenceTransformer(hparams.sentence_model_name).to(f'cuda:{hparams.device}')
# 生成知识嵌入文件
encode_ike_facts(sentence_model, train_ds, hparams)
3. 编辑流程调整
在调用editor.edit()时,需要添加train_ds参数:
metrics, edited_model, _ = editor.edit(
prompts=prompts,
target_new=target_new,
subject=subjects,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
train_ds=train_data, # 添加训练数据集
keep_original_weight=True
)
模型兼容性说明
目前验证通过的模型:
- Llama2-7b:完全支持
- GPT2-XL/GPTJ-6B:存在字符串连接类型错误,需要额外处理
最佳实践建议
-
数据准备:确保使用训练数据(train_cf.json)构建知识存储,测试数据(test_cf.json)用于实际编辑。
-
参数配置:检查hparams中的sentence_model_name是否与生成的.pkl文件匹配。
-
路径设置:确保results_dir路径正确,程序有写入权限。
-
模型选择:目前推荐使用Llama2-7b进行编辑,其他模型可能需要额外调试。
总结
通过上述改进,EasyEdit项目中的IKE方法现已能够支持WikiCounterFact数据集的知识编辑任务。这一解决方案不仅解决了初始的数据兼容性问题,还提供了完整的预处理流程,为后续的知识编辑研究提供了可靠的基础。对于其他模型的支持,项目团队仍在持续优化中。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5