MNBVC多模态处理技术:从PDF解析到图文对构建的完整流程
MNBVC(Massive Never-ending BT Vast Chinese corpus)超大规模中文语料集正在构建一个全面的多模态数据处理生态系统,专门针对PDF文档解析和图文对构建等关键任务。这个开源项目为中文AI发展提供了宝贵的数据基础,让开发者能够更轻松地处理复杂的多模态数据。
🚀 多模态处理工具链概览
MNBVC项目组开发了一系列专门的多模态处理工具,涵盖了从PDF文档解析到图文对构建的完整流程:
PDF元信息抽取工具
pdf_meta_data_mnbvc工具专门用于从PDF文件中提取元数据信息,包括文档标题、作者、创建日期、修改日期等关键信息,为后续处理提供基础数据支持。
PDF解析规则工具
mmdp_mnbvc工具提供了一套完整的PDF解析规则,能够智能识别文档结构、表格、图片等元素,确保解析的准确性和完整性。
PDF转文本工具
pdf2txt_mnbvc是第一版的PDF转TXT工具,为后续更复杂的处理奠定了基础。
Arxiv图文对处理工具
ARXIV_IMAGE2CAPTION_mnbvc专门处理Arxiv论文中的图片和标题,构建高质量的图文对数据集。
文档格式转换工具
docling_parse_mnbvc能够将PDF文件转换为JSON和Markdown格式,大大提高了数据的可用性和处理效率。
📊 多模态数据处理流程详解
第一步:PDF文档解析
使用pdf_meta_data_mnbvc工具提取PDF文档的基本元信息,为后续处理做好准备。
第二步:内容结构识别
通过mmdp_mnbvc工具分析文档的页面布局、文本段落、表格结构等,构建文档的语义层次。
第三步:图文对构建
利用ARXIV_IMAGE2CAPTION_mnbvc工具,从学术论文中提取图片及其对应的标题描述,形成标准的图文对数据集。
第四步:格式标准化
使用docling_parse_mnbvc将解析后的内容转换为标准的JSON和Markdown格式,便于后续的模型训练和使用。
🛠️ 数据格式标准化
MNBVC项目特别重视数据格式的标准化处理。压缩包内的中文语料包括txt、json、jsonl和parquet(多模态专用)格式,最终会统一到jsonl和parquet格式,确保数据的兼容性和处理效率。
💡 实际应用场景
学术论文处理
多模态处理技术能够高效处理Arxiv等学术平台的大量论文,提取其中的文字内容和图片信息,构建完整的学术知识图谱。
文档数字化
对于历史文献、技术文档等PDF格式的资料,这些工具能够实现高质量的数字化转换。
AI模型训练
标准化的图文对数据为多模态AI模型训练提供了优质的训练素材。
🔄 持续优化与改进
MNBVC项目组持续优化多模态处理技术,特别是在OCR转码方面,目前已经成立了专门的OCR转码小组,致力于将文字-图片的多模态语料处理得更加精准。
📈 项目进展与展望
目前MNBVC项目总数据量已达60335GB,目标是达到253T数据,当前进度为23.8%。随着多模态处理技术的不断完善,项目将为中文AI的发展提供更加丰富和优质的数据资源。
通过这套完整的多模态处理技术流程,MNBVC项目正在为中文AI的发展奠定坚实的数据基础,让更多的开发者和研究者能够受益于这些高质量的中文语料数据。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00