John the Ripper在AMD Vega显卡上的OpenCL兼容性问题分析
问题背景
John the Ripper作为一款流行的密码分析工具,其OpenCL加速功能在不同GPU架构上的表现存在差异。特别是在AMD Vega 64显卡上,多个使用OpenCL加速的哈希算法实现出现了自测试失败的情况。
核心问题表现
在AMD Vega 64显卡上,多个使用HMAC-SHA1、HMAC-SHA256和HMAC-SHA512算法的格式在自测试中失败。具体表现为:
- ZIP格式(使用PBKDF2-SHA1)在最终HMAC-SHA1计算时输出值不正确
- EncFS和PFX格式同样出现HMAC相关计算错误
- 其他使用AES加密的格式如KeePass、TrueCrypt等也出现验证失败
问题根源分析
经过深入调试,发现问题主要出现在以下几个方面:
-
上下文重用问题:在HMAC计算过程中,SHA上下文结构体被重复使用时,AMD显卡的OpenCL编译器可能没有正确初始化所有字段。这导致后续计算基于错误的状态进行。
-
编译器优化问题:AMD的OpenCL编译器在某些情况下会过度优化,导致关键变量被错误地重用或忽略。通过插入volatile限定符或内存屏障可以部分解决。
-
32/64位兼容性问题:部分内核代码中将64位变量截断为32位使用,虽然这不是主要问题根源,但存在潜在风险。
解决方案
针对这些问题,开发团队提出了以下解决方案:
- 上下文隔离:为每次HMAC计算创建新的上下文结构体,避免重用:
#if gpu_amd(DEVICE_INFO)
SHA_CTX ctx2;
#define ctx ctx2
#endif
- 内存访问控制:在关键位置插入volatile访问,防止编译器过度优化:
(void) *(volatile __global uint *)&out[ix].hash[0];
- 算法实现调整:对HMAC-SHA256和HMAC-SHA512也应用类似的修复措施,使更多格式能够通过测试。
修复效果
应用这些修复后,大多数格式在Vega 64上通过了自测试:
- ZIP、EncFS、PFX等格式恢复正常
- 使用PBKDF2-SHA512的格式如GELI、1Password Cloud Keychain也通过测试
- 总体失败测试从14个减少到5个
遗留问题
仍有部分使用AES加密的格式未能通过测试:
- AxCrypt 2.x (PBKDF2-SHA512 AES)
- KeePass (AES)
- PGP Disk (SHA1 AES/TwoFish/CAST)
- TrueCrypt (RIPEMD160 AES256_XTS)
这些问题可能与AES实现相关的更深层次编译器优化问题有关,需要进一步研究。
跨平台对比
值得注意的是,这些问题在NVIDIA显卡上并不存在,所有101个测试格式都能通过。在Intel CPU上,失败的模式也不同,主要是一些特定算法如DES和GOST的实现问题。
总结
AMD Vega显卡上的OpenCL实现存在一些特殊的编译器行为,特别是在上下文重用和内存访问优化方面。通过针对性的工作区方法,John the Ripper团队成功解决了大部分兼容性问题。这些经验也为在其他AMD GPU架构上的OpenCL优化提供了参考。对于仍存在的AES相关问题,可能需要更深入的内核代码审查或等待AMD驱动更新来解决。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00