John the Ripper在AMD Vega显卡上的OpenCL兼容性问题分析
问题背景
John the Ripper作为一款流行的密码分析工具,其OpenCL加速功能在不同GPU架构上的表现存在差异。特别是在AMD Vega 64显卡上,多个使用OpenCL加速的哈希算法实现出现了自测试失败的情况。
核心问题表现
在AMD Vega 64显卡上,多个使用HMAC-SHA1、HMAC-SHA256和HMAC-SHA512算法的格式在自测试中失败。具体表现为:
- ZIP格式(使用PBKDF2-SHA1)在最终HMAC-SHA1计算时输出值不正确
- EncFS和PFX格式同样出现HMAC相关计算错误
- 其他使用AES加密的格式如KeePass、TrueCrypt等也出现验证失败
问题根源分析
经过深入调试,发现问题主要出现在以下几个方面:
-
上下文重用问题:在HMAC计算过程中,SHA上下文结构体被重复使用时,AMD显卡的OpenCL编译器可能没有正确初始化所有字段。这导致后续计算基于错误的状态进行。
-
编译器优化问题:AMD的OpenCL编译器在某些情况下会过度优化,导致关键变量被错误地重用或忽略。通过插入volatile限定符或内存屏障可以部分解决。
-
32/64位兼容性问题:部分内核代码中将64位变量截断为32位使用,虽然这不是主要问题根源,但存在潜在风险。
解决方案
针对这些问题,开发团队提出了以下解决方案:
- 上下文隔离:为每次HMAC计算创建新的上下文结构体,避免重用:
#if gpu_amd(DEVICE_INFO)
SHA_CTX ctx2;
#define ctx ctx2
#endif
- 内存访问控制:在关键位置插入volatile访问,防止编译器过度优化:
(void) *(volatile __global uint *)&out[ix].hash[0];
- 算法实现调整:对HMAC-SHA256和HMAC-SHA512也应用类似的修复措施,使更多格式能够通过测试。
修复效果
应用这些修复后,大多数格式在Vega 64上通过了自测试:
- ZIP、EncFS、PFX等格式恢复正常
- 使用PBKDF2-SHA512的格式如GELI、1Password Cloud Keychain也通过测试
- 总体失败测试从14个减少到5个
遗留问题
仍有部分使用AES加密的格式未能通过测试:
- AxCrypt 2.x (PBKDF2-SHA512 AES)
- KeePass (AES)
- PGP Disk (SHA1 AES/TwoFish/CAST)
- TrueCrypt (RIPEMD160 AES256_XTS)
这些问题可能与AES实现相关的更深层次编译器优化问题有关,需要进一步研究。
跨平台对比
值得注意的是,这些问题在NVIDIA显卡上并不存在,所有101个测试格式都能通过。在Intel CPU上,失败的模式也不同,主要是一些特定算法如DES和GOST的实现问题。
总结
AMD Vega显卡上的OpenCL实现存在一些特殊的编译器行为,特别是在上下文重用和内存访问优化方面。通过针对性的工作区方法,John the Ripper团队成功解决了大部分兼容性问题。这些经验也为在其他AMD GPU架构上的OpenCL优化提供了参考。对于仍存在的AES相关问题,可能需要更深入的内核代码审查或等待AMD驱动更新来解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00