Hadoop-LZO安装与使用指南
项目介绍
Hadoop-LZO 是一个旨在为 Hadoop 提供可分裂(splittable)的 LZO 压缩支持的项目。LZO是一种以速度见长的压缩算法,结合了高效的压缩比和快速的压缩/解压缩能力,使其成为Hadoop生态系统中处理大规模数据的理想选择。由于原生的LZO文件不支持Hadoop的并行处理特性,此项目通过对google/com/hadoop-gpl-compression
的重构,解决了这一限制,允许LZO压缩的文件可以被多个Hadoop Map任务并行读取。
项目快速启动
获取源码与依赖
首先,你需要从GitHub克隆Hadoop-LZO的仓库:
git clone https://github.com/twitter/hadoop-lzo.git
cd hadoop-lzo
确保你的系统已安装JDK 1.6或更高版本(Mac OS X上推荐1.7及以上),以及LZO 2.x库。如果系统未预装,可以从Oberhumer下载LZO并编译安装。
编译与构建
配置环境变量以指向LZO的头文件和库文件路径,然后使用Maven进行构建:
C_INCLUDE_PATH=/usr/local/lzo-2.10/include \
LIBRARY_PATH=/usr/local/lzo-2.10/lib \
mvn clean package
完成后,将生成的jar文件添加至Hadoop的classpath中,并配置相关环境以启用LZO支持。
应用案例与最佳实践
Hadoop-LZO的应用广泛,尤其适合那些需要快速访问但又希望减少存储空间的大数据场景,如日志分析、大数据仓库等。最佳实践中,创建LZO压缩文件后,利用其提供的LzoIndexer
来创建索引,这使得大型LZO文件能够根据HDFS的Block边界有效分割,从而充分利用Hadoop的分布式计算优势。
示例:配置Hadoop使用LZO
编辑Hadoop的配置文件(例如core-site.xml
),添加LZO相关的类路径:
<configuration>
<property>
<name>io.compression.codecs</name>
<value>com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec</value>
</property>
<property>
<name>io.compression.codec.lzo.class</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
</configuration>
确保将编译好的hadoop-lzo.jar
添加到Hadoop的类路径中。
典型生态项目
在Hadoop生态中,Hadoop-LZO常与其他数据分析框架如Apache Hive和Pig集成,用于提升数据处理效率。通过配置这些框架,可以直接使用LZO压缩的数据文件,加快查询和处理速度。例如,在Hive中,可以通过指定表的存储格式为LZO来实现压缩存储:
CREATE TABLE IF NOT EXISTS example_table
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lzo.LZOSerde'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.LzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
通过上述步骤,您不仅能够成功集成Hadoop-LZO,还能充分利用它的性能优势来优化您的大数据处理流程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









