Grounded-SAM在开放词汇全景分割中的应用探索
2025-05-14 09:44:03作者:薛曦旖Francesca
概述
Grounded-SAM作为结合了Grounding DINO和Segment Anything Model(SAM)的强大视觉模型,在开放词汇目标检测和实例分割任务中表现出色。近期有开发者提出将其应用于全景分割任务的需求,本文将深入探讨这一技术方案的可行性及实现路径。
技术背景
全景分割是计算机视觉领域的一项重要任务,它要求模型不仅能识别图像中的物体类别(语义分割),还要区分同一类别的不同实例(实例分割)。传统的全景分割方法通常需要预先定义固定的类别集合,难以应对开放场景下的新类别识别需求。
方案分析
通过将Grounded-SAM与先进的视觉语言模型RAM++结合,可以构建一个完整的开放词汇全景分割系统:
- RAM++模型:负责图像内容的开放词汇识别,生成全面的语义标签
- Grounded-SAM:基于RAM++提供的语义提示,执行精确的实例分割
- 后处理模块:将实例分割结果与背景区域融合,形成完整的全景分割输出
实现优势
这种组合方案具有以下显著优势:
- 开放词汇能力:可以识别训练数据中未出现的新类别
- 零样本迁移:无需针对特定场景进行微调
- 高精度分割:得益于SAM强大的分割能力
- 端到端流程:从图像输入到全景分割结果输出一气呵成
应用建议
对于希望实现开放词汇全景分割的开发者,建议采用以下实践路线:
- 使用RAM++进行图像内容理解,获取全面的语义概念
- 将这些概念作为prompt输入Grounded-SAM
- 对SAM输出的实例掩码进行后处理,补充背景区域
- 可视化验证结果质量,必要时加入人工校验环节
总结
Grounded-SAM与RAM++的组合为解决开放词汇全景分割问题提供了切实可行的技术路径。这种方案特别适合需要处理未知类别或动态场景的应用,如智能监控、自动驾驶等前沿领域。随着多模态大模型技术的进步,这类开放词汇视觉理解系统将展现出更广阔的应用前景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355