Volatility3框架中Linux内存取证的文件提取问题分析
2025-06-26 05:56:34作者:农烁颖Land
问题背景
在Linux内存取证分析过程中,使用Volatility3框架的linux.pagecache.InodePages
插件提取文件内容时,可能会遇到无法正确提取文件的问题。本文将通过一个实际案例,分析这类问题的成因和解决方案。
案例现象
分析人员在尝试从Ubuntu 20.04系统的内存转储文件中提取/etc/passwd
和/home/paco/pkexecc
文件时,遇到了以下情况:
- 对于
/etc/passwd
文件,插件输出显示没有缓存页(CachedPages为0),导致无法提取内容 - 对于
/home/paco/pkexecc
文件,虽然显示有5个缓存页(CachedPages为5),但提取时出现错误
技术分析
1. 符号表问题
深入分析发现,问题的根源在于使用了不合适的符号表生成工具。分析人员最初使用了第三方工具symbol_maker
来生成内核符号表(ISF文件),但这个工具存在以下问题:
- 版本较老(3年未更新)
- 生成的符号表不完整
- 可能导致内核数据结构解析错误
正确的做法是使用官方推荐的dwarf2json
工具,直接从内核ELF文件(vmlinux)生成符号表。
2. 页面缓存机制
Linux内核的页面缓存机制也影响了文件提取结果:
/etc/passwd
文件显示CachedPages为0,说明该文件当前没有被缓存在内存中/home/paco/pkexecc
文件显示所有页面都被缓存,理论上可以完整提取
3. 插件使用方式
linux.pagecache.InodePages
插件的--dump
参数实际上不需要指定文件名,它会自动将所有找到的文件内容输出到指定的目录中。正确的使用方式是:
vol.py -O output_directory linux.pagecache.InodePages --find /path/to/file
解决方案
-
使用正确的符号表生成工具:
- 获取与内存转储匹配的内核ELF文件
- 使用最新版
dwarf2json
生成符号表 - 将生成的JSON文件放在Volatility3的symbols目录下
-
验证页面缓存状态:
- 首先使用
linux.pagecache.Files
插件检查目标文件的缓存状态 - 确认CachedPages数量大于0才尝试提取
- 首先使用
-
正确使用提取参数:
- 使用
-O
指定输出目录 - 不需要为
--dump
指定文件名参数
- 使用
技术建议
-
对于关键系统文件(如
/etc/passwd
),如果发现没有缓存页,可以尝试其他提取方法,如通过进程内存或文件系统缓存分析。 -
在分析前,建议先用
linux.banner
插件确认内核版本,确保使用匹配的符号表。 -
对于可执行文件,除了页面缓存提取外,还可以尝试从进程内存映射中提取完整内容。
总结
Linux内存取证中的文件提取依赖于准确的符号表和正确的插件使用方法。通过使用官方工具生成符号表、理解Linux页面缓存机制以及正确使用Volatility3插件,可以大大提高文件提取的成功率。对于特殊案例,需要结合多种分析方法和插件进行综合取证。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133