Kong升级过程中PostgreSQL DNS解析问题的深度分析与解决方案
问题背景
在Kong网关从3.7.1版本升级到3.9.0版本的过程中,许多用户遇到了PostgreSQL DNS解析失败的问题。这个问题不仅出现在3.9.0版本,在3.8.0版本中也同样存在。当执行kong migrations list、kong migrations up或kong migrations finish命令时,系统会报告DNS解析超时错误,尽管从Pod内部手动执行nslookup命令可以正常解析PostgreSQL的主机名。
问题现象
典型的错误信息表现为:
[PostgreSQL error] failed to retrieve PostgreSQL server_version_num: [cosocket] DNS resolution failed: DNS server error: failed to receive reply from UDP server 10.0.0.10:53: timeout
而手动测试DNS解析却能正常工作:
nslookup psql-hcp-apim-dmz-cp-dev-centralus.postgres.database.azure.com
Server: 10.0.0.10
Address: 10.0.0.10#53
Non-authoritative answer:
Name: psql-hcp-apim-dmz-cp-dev-centralus.privatelink.postgres.database.azure.com
Address: 10.15.34.69
技术分析
1. DNS解析机制差异
Kong在内部使用cosocket进行DNS解析,这与系统级的nslookup使用不同的解析机制。cosocket是OpenResty提供的一种非阻塞socket实现,它有自己的DNS解析逻辑和超时设置。
2. 超时设置问题
Kong的DNS客户端可能在处理超时方面存在问题,特别是在高延迟或网络不稳定的环境中。当DNS服务器响应稍慢时,Kong可能过早地放弃了等待响应。
3. DNS缓存问题
有迹象表明Kong可能在重用已关闭的网络连接或缓存了过时的DNS记录,导致后续请求失败。这在Kubernetes环境中尤为明显,因为Pod重建后网络环境可能发生变化。
解决方案
1. 启用新DNS客户端
尝试使用Kong的新DNS客户端实现:
KONG_NEW_DNS_CLIENT=on kong migrations list
这个环境变量可以放在Kubernetes部署配置中,适用于所有Kong相关的Pod和Job。
2. 调整DNS配置
在Kubernetes环境中,可以调整Pod的DNS配置:
- 修改
ndots设置(在/etc/resolv.conf中):
options ndots:2
- 增加DNS重试次数:
KONG_DNS_RESOLVER_OPTIONS="{\"retrans\":3}"
3. 完整配置示例
对于Kubernetes部署,可以在Deployment或Job的env部分添加:
env:
- name: KONG_NEW_DNS_CLIENT
value: "on"
- name: KONG_DNS_RESOLVER_OPTIONS
value: '{"retrans":3,"timeout":1000}'
4. 临时解决方案
如果问题持续存在,可以考虑以下临时方案:
- 完全删除并重建Pod,而不是等待它自动重启
- 在迁移前确保DNS缓存被清除
- 考虑使用IP地址而非主机名连接PostgreSQL(不推荐长期使用)
预防措施
- 在升级前,先在测试环境中验证DNS解析是否正常
- 监控DNS解析时间,确保网络延迟在可接受范围内
- 考虑使用Kubernetes的DNS缓存服务(如NodeLocal DNSCache)来提高DNS解析的可靠性
总结
Kong升级过程中的DNS解析问题通常与内部DNS客户端实现和网络环境配置有关。通过启用新DNS客户端、调整DNS参数和优化Kubernetes网络配置,大多数情况下可以解决这些问题。对于关键生产环境,建议在升级前充分测试,并准备好回滚方案。
随着Kong版本的更新,这些问题有望在未来的版本中得到根本解决。建议关注Kong的官方更新日志,及时获取最新的修复信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00