PyTorch Image Models中ViT网络的多层特征提取实现分析
2025-05-04 22:09:27作者:盛欣凯Ernestine
背景介绍
在计算机视觉领域,Vision Transformer(ViT)已经成为一种重要的网络架构。PyTorch Image Models(timm)库作为PyTorch生态中知名的图像模型库,近期对其ViT类网络的多层特征提取功能进行了重要更新。
技术挑战
传统上,timm库中的ViT网络缺乏像CNN那样的多层特征提取能力,这限制了其在需要多尺度特征的任务(如目标检测、语义分割等)中的应用。用户在使用ViT作为backbone时,会遇到"features_only not implemented for Vision Transformer models"的错误提示。
解决方案实现
timm库通过引入新的特征提取机制解决了这一问题。核心思路是利用ViT网络中的中间层输出,这与DINOv2等项目中使用的get_intermediate_layers概念类似。实现要点包括:
- 创建了FeatureGetterNet包装类,统一处理特征提取逻辑
- 支持输出主干网络特征,这些特征仍可通过池化和分类器处理
- 保持与现有CNN特征提取接口的兼容性
技术验证
该实现已通过多种ViT变体的验证测试,包括:
- BEiT
- ViT
- ViT-SAM
- EVA
- MViTv2
- Twins
- DeiT
在目标检测任务中,这些模型在第一个epoch就能达到0.152-0.2的mAP指标,证明了实现的可行性。
应用集成
虽然该功能已实现,但在与HuggingFace Transformers等库集成时仍存在一些兼容性问题。特别是Transformers库中的timm_backbone适配器需要相应更新,以支持这种新的特征提取方式。
未来方向
开发团队计划将该功能扩展到更多ViT变体网络,如:
- CaiT
- XCiT
- VOLO
这将进一步扩大timm库中ViT模型的应用范围。
总结
PyTorch Image Models库对ViT网络多层特征提取的支持,为计算机视觉任务提供了更灵活的网络选择。这一更新使得ViT能够更好地应用于目标检测、语义分割等需要多尺度特征的任务中,拓展了Transformer架构在视觉领域的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210