natml-unity 的安装和配置教程
项目基础介绍
natml-unity 是一个为 Unity 引擎提供高性能、跨平台的机器学习集成的开源项目。该项目允许开发者在 Unity 应用程序中轻松集成机器学习功能,而无需深入了解机器学习的专业知识。它支持多种机器学习模型格式,如 CoreML、TensorFlow Lite 和 ONNX,并且可以充分利用硬件优化器来提升运行效率。
主要编程语言
该项目主要使用 C# 编写,同时也包含部分 C 和 C++ 代码。
项目使用的关键技术和框架
natml-unity 使用的关键技术包括 Unity 引擎的集成、机器学习模型的加载和执行,以及跨平台性能优化。它利用了如下框架和库:
- CoreML(iOS 和 macOS)
- TensorFlow Lite(Android)
- ONNX(Windows)
项目安装和配置的准备工作
在开始安装 natml-unity 之前,请确保您的开发环境满足以下要求:
- Unity 2022.3 或更高版本
- 对应平台的 SDK(例如 Android SDK、iOS SDK 等)
- 安装了 Git 的开发环境
安装步骤
以下是在 Unity 项目中安装和配置 natml-unity 的详细步骤:
-
克隆项目仓库
打开命令行工具,并执行以下命令来克隆仓库:
git clone https://github.com/natmlx/natml-unity.git -
将项目文件添加到 Unity
在 Unity 编辑器中,通过
Assets菜单选择Import Package,然后选择natml-unity文件夹中的NatML.unitypackage文件。 -
配置项目设置
根据您的目标平台配置 Unity 的项目设置,包括 SDK 路径、构建和运行设置等。
-
添加依赖项
打开项目文件夹中的
Packages/manifest.json文件,并添加以下内容以包含natml依赖项:{ "scopedRegistries": [ { "name": "NatML", "url": "https://registry.npmjs.com", "scopes": [ "ai.natml" ] } ], "dependencies": { "ai.natml.natml": "1.1.16" } } -
导入模型
将您的 CoreML(.mlmodel)、TensorFlow Lite(.tflite)或 ONNX(.onnx)模型拖放到 Unity 项目中。
-
编写预测代码
使用提供的 API 创建一个预测器,并对其进行预测调用。例如:
// 创建 MobileNet v2 预测器 var predictor = await MobileNetv2Predictor.Create(); // 使用预测器进行图像预测 Texture2D image = ...; // 获取图像 var (label, score) = predictor.Predict(image); -
测试和部署
在 Unity 编辑器中测试您的应用程序,然后根据目标平台构建并部署。
以上步骤就是 natml-unity 的安装和配置过程,按照这些步骤操作,您应该能够成功集成机器学习功能到您的 Unity 应用中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00