AIChat项目中的Web搜索功能设计与实现思考
背景与需求分析
在现代AI助手应用中,网络搜索能力已成为核心功能之一。AIChat作为一个开源AI对话系统,其用户群体对网络搜索功能有着多样化需求:有些用户偏好使用DuckDuckGo作为搜索引擎,而另一些则更倾向于Tavily等专业搜索服务。当前版本中,AIChat尚未提供这种灵活可配置的Web搜索能力。
技术挑战
实现这一功能面临两个主要技术挑战:
-
工具实现的灵活性:需要设计一种机制,让用户能够自由选择底层搜索引擎实现,同时保持上层接口的统一性。
-
角色与工具的耦合问题:当前AIChat中工具与角色绑定过紧,通过functions_filter字段将特定工具限定在特定角色中使用,这种设计限制了功能的组合使用。
解决方案设计
配置层设计
在config.yaml中新增mapping_tools配置节,实现工具别名映射:
mapping_tools:
web_search: 'search_tavily' # 将web_search映射到具体的搜索实现
code_interpreter: 'execute_py_code'
这种设计提供了以下优势:
- 用户可自由更换底层实现
- 保持上层接口一致性
- 便于未来扩展更多映射工具
代理层设计
在代理定义文件(index.yaml)中引入common_tools配置项:
common_tools:
- web_search
- code_interpreter
该设计限定了代理可使用的通用工具类型,目前仅支持web_search和code_interpreter两种,确保功能的可控性。
运行时控制
新增use_tools配置项,支持多种使用方式:
use_tools: web_search # 单独启用
use_tools: web_search,code_interpreter # 组合启用
use_tools: all # 启用全部
用户可通过.set命令动态调整工具使用:
.set use_tools web_search
.set use_tools web_search,save_file
.set use_tools all
技术考量与扩展性
原生LLM搜索支持
部分LLM模型(如cohere:command-r*、ernie:、perplexity:-online)原生支持网络搜索功能。系统设计需要考虑:
- 如何与这些原生功能集成
- 是否提供统一的抽象层
- 性能与效果权衡
工具生态系统
虽然当前仅支持三种核心工具(web_search、code_interpreter和绘图),但架构设计考虑了未来扩展:
- 工具映射机制为新增工具类型预留了接口
- 配置系统支持灵活的工具组合
- 运行时控制允许动态调整工具集
实现建议
对于开发者而言,实现这一功能时应注意:
- 保持工具接口的稳定性,底层实现可替换
- 提供清晰的错误处理机制,当请求的工具不可用时给出明确提示
- 考虑性能监控,特别是网络搜索这类I/O密集型操作
- 为常用搜索引擎提供参考实现,降低用户使用门槛
总结
AIChat的Web搜索功能设计体现了良好的软件工程原则:通过配置化实现灵活性,通过抽象层保持一致性,通过模块化确保可扩展性。这种设计不仅解决了当前的搜索需求,也为未来的功能扩展奠定了坚实基础。对于开发者社区而言,理解这一设计思路有助于更好地贡献代码和使用系统。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00