AIChat项目中的Web搜索功能设计与实现思考
背景与需求分析
在现代AI助手应用中,网络搜索能力已成为核心功能之一。AIChat作为一个开源AI对话系统,其用户群体对网络搜索功能有着多样化需求:有些用户偏好使用DuckDuckGo作为搜索引擎,而另一些则更倾向于Tavily等专业搜索服务。当前版本中,AIChat尚未提供这种灵活可配置的Web搜索能力。
技术挑战
实现这一功能面临两个主要技术挑战:
-
工具实现的灵活性:需要设计一种机制,让用户能够自由选择底层搜索引擎实现,同时保持上层接口的统一性。
-
角色与工具的耦合问题:当前AIChat中工具与角色绑定过紧,通过functions_filter字段将特定工具限定在特定角色中使用,这种设计限制了功能的组合使用。
解决方案设计
配置层设计
在config.yaml中新增mapping_tools配置节,实现工具别名映射:
mapping_tools:
web_search: 'search_tavily' # 将web_search映射到具体的搜索实现
code_interpreter: 'execute_py_code'
这种设计提供了以下优势:
- 用户可自由更换底层实现
- 保持上层接口一致性
- 便于未来扩展更多映射工具
代理层设计
在代理定义文件(index.yaml)中引入common_tools配置项:
common_tools:
- web_search
- code_interpreter
该设计限定了代理可使用的通用工具类型,目前仅支持web_search和code_interpreter两种,确保功能的可控性。
运行时控制
新增use_tools配置项,支持多种使用方式:
use_tools: web_search # 单独启用
use_tools: web_search,code_interpreter # 组合启用
use_tools: all # 启用全部
用户可通过.set命令动态调整工具使用:
.set use_tools web_search
.set use_tools web_search,save_file
.set use_tools all
技术考量与扩展性
原生LLM搜索支持
部分LLM模型(如cohere:command-r*、ernie:、perplexity:-online)原生支持网络搜索功能。系统设计需要考虑:
- 如何与这些原生功能集成
- 是否提供统一的抽象层
- 性能与效果权衡
工具生态系统
虽然当前仅支持三种核心工具(web_search、code_interpreter和绘图),但架构设计考虑了未来扩展:
- 工具映射机制为新增工具类型预留了接口
- 配置系统支持灵活的工具组合
- 运行时控制允许动态调整工具集
实现建议
对于开发者而言,实现这一功能时应注意:
- 保持工具接口的稳定性,底层实现可替换
- 提供清晰的错误处理机制,当请求的工具不可用时给出明确提示
- 考虑性能监控,特别是网络搜索这类I/O密集型操作
- 为常用搜索引擎提供参考实现,降低用户使用门槛
总结
AIChat的Web搜索功能设计体现了良好的软件工程原则:通过配置化实现灵活性,通过抽象层保持一致性,通过模块化确保可扩展性。这种设计不仅解决了当前的搜索需求,也为未来的功能扩展奠定了坚实基础。对于开发者社区而言,理解这一设计思路有助于更好地贡献代码和使用系统。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00