AIChat项目中的Web搜索功能设计与实现思考
背景与需求分析
在现代AI助手应用中,网络搜索能力已成为核心功能之一。AIChat作为一个开源AI对话系统,其用户群体对网络搜索功能有着多样化需求:有些用户偏好使用DuckDuckGo作为搜索引擎,而另一些则更倾向于Tavily等专业搜索服务。当前版本中,AIChat尚未提供这种灵活可配置的Web搜索能力。
技术挑战
实现这一功能面临两个主要技术挑战:
-
工具实现的灵活性:需要设计一种机制,让用户能够自由选择底层搜索引擎实现,同时保持上层接口的统一性。
-
角色与工具的耦合问题:当前AIChat中工具与角色绑定过紧,通过functions_filter字段将特定工具限定在特定角色中使用,这种设计限制了功能的组合使用。
解决方案设计
配置层设计
在config.yaml中新增mapping_tools配置节,实现工具别名映射:
mapping_tools:
web_search: 'search_tavily' # 将web_search映射到具体的搜索实现
code_interpreter: 'execute_py_code'
这种设计提供了以下优势:
- 用户可自由更换底层实现
- 保持上层接口一致性
- 便于未来扩展更多映射工具
代理层设计
在代理定义文件(index.yaml)中引入common_tools配置项:
common_tools:
- web_search
- code_interpreter
该设计限定了代理可使用的通用工具类型,目前仅支持web_search和code_interpreter两种,确保功能的可控性。
运行时控制
新增use_tools配置项,支持多种使用方式:
use_tools: web_search # 单独启用
use_tools: web_search,code_interpreter # 组合启用
use_tools: all # 启用全部
用户可通过.set命令动态调整工具使用:
.set use_tools web_search
.set use_tools web_search,save_file
.set use_tools all
技术考量与扩展性
原生LLM搜索支持
部分LLM模型(如cohere:command-r*、ernie:、perplexity:-online)原生支持网络搜索功能。系统设计需要考虑:
- 如何与这些原生功能集成
- 是否提供统一的抽象层
- 性能与效果权衡
工具生态系统
虽然当前仅支持三种核心工具(web_search、code_interpreter和绘图),但架构设计考虑了未来扩展:
- 工具映射机制为新增工具类型预留了接口
- 配置系统支持灵活的工具组合
- 运行时控制允许动态调整工具集
实现建议
对于开发者而言,实现这一功能时应注意:
- 保持工具接口的稳定性,底层实现可替换
- 提供清晰的错误处理机制,当请求的工具不可用时给出明确提示
- 考虑性能监控,特别是网络搜索这类I/O密集型操作
- 为常用搜索引擎提供参考实现,降低用户使用门槛
总结
AIChat的Web搜索功能设计体现了良好的软件工程原则:通过配置化实现灵活性,通过抽象层保持一致性,通过模块化确保可扩展性。这种设计不仅解决了当前的搜索需求,也为未来的功能扩展奠定了坚实基础。对于开发者社区而言,理解这一设计思路有助于更好地贡献代码和使用系统。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00