Apache Fury 线程安全模式下的CPU利用率问题分析与修复
2025-06-25 15:14:40作者:卓炯娓
Apache Fury是一个高性能的Java序列化框架,在其0.7.0版本中,当使用ThreadSafeFury模式进行序列化操作时,可能会出现CPU利用率飙升至100%的问题。本文将深入分析该问题的成因以及解决方案。
问题现象
在Spring Boot 3.3+环境中使用Dragonwell17 JDK时,当应用程序通过Fury进行频繁的序列化和反序列化操作时,系统监控显示CPU利用率突然升高至100%,并且持续不降。通过线程转储分析,发现大量线程阻塞在WeakHashMap.put()方法的调用上。
根本原因
问题根源在于ThreadLocalFury实现中的线程安全性缺陷。ThreadLocalFury内部使用WeakHashMap来跟踪所有创建的Fury实例,但这个数据结构在多线程环境下存在并发问题。具体表现为:
- 每个线程首次访问ThreadLocalFury时,都会通过ThreadLocal机制创建一个新的Fury实例
- 这些新创建的实例会被放入一个共享的WeakHashMap中
- 当多个线程同时初始化时,它们会并发地向WeakHashMap执行put操作
- WeakHashMap不是线程安全的,导致内部状态不一致,最终引发CPU利用率飙升
解决方案
Apache Fury项目维护者已经通过以下方式修复了这个问题:
- 使用Collections.synchronizedMap()包装WeakHashMap,确保对映射的所有访问都是线程安全的
- 或者也可以考虑使用ConcurrentHashMap替代WeakHashMap
对于用户而言,正确的使用方式应该是:
- 确保ThreadSafeFury实例是静态的(static final),避免重复创建
- 在Spring等框架中,应该将Fury实例配置为单例Bean
最佳实践
为了避免类似问题,在使用Apache Fury时建议:
- 对于高并发应用,优先考虑使用ThreadPoolFury而非ThreadLocalFury
- 确保Fury实例的创建是可控的,避免无限制的实例化
- 在生产环境部署前,进行充分的压力测试
- 及时更新到修复了该问题的Fury版本
该问题的修复体现了开源社区对性能问题的快速响应能力,也提醒我们在使用高性能序列化框架时需要注意其线程模型和资源管理机制。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146