**Pylightxl:轻量级无依赖的Excel读写工具**
2024-09-22 01:28:32作者:裘旻烁
项目介绍
Pylightxl 是一个专为轻量级设计的、无需任何非标准库依赖的Python库,支持Python 2.7至Python 3+版本的Excel文件(xlsx、xlsm)和CSV文件的读写操作。它以简洁至上为原则,摒弃了冗余功能,专注于基础的Excel处理需求。无需担心Python版本兼容性问题,Pylightxl承诺长期支持所有版本的Python。此外,它的单文件结构使得集成到其他项目中变得异常简单,非常适合对项目体积敏感的应用,比如Django项目。
项目快速启动
首先,确保你的环境已经安装了Python。接下来,通过pip安装pylightxl:
pip install pylightxl
安装完成后,你可以开始进行Excel文件的基本操作。以下是一个简单的示例,展示如何读取Excel中的数据:
from pylightxl import DB
# 读取Excel文件
db = DB(filename='example.xlsx')
sheet_data = db.ws(ws='Sheet1').rows()
# 打印第一行数据
for row in sheet_data:
print(row)
若要写入Excel,则可以这样做:
from pylightxl import DB
# 创建或打开Excel文件进行写入
db = DB()
db.add_ws(ws='Sheet1')
db.ws('Sheet1').add_rows([['姓名', '年龄'], ['张三', 30], ['李四', 25]])
db.write('output.xlsx')
应用案例和最佳实践
数据迁移
在需要将大量旧系统数据导出至Excel时,Pylightxl因其轻巧和无需额外依赖的特性,成为理想选择。例如,从数据库中提取数据并批量写入Excel文件,实现高效的数据整理与备份。
import sqlite3
from pylightxl import DB
# 假设有一个SQLite数据库
conn = sqlite3.connect('mydatabase.db')
data = conn.execute("SELECT * FROM employees").fetchall()
db = DB()
ws_name = 'Employees'
db.add_ws(ws=ws_name)
# 将数据添加到Excel工作表
for row in data:
db.ws(ws_name).add_row(row)
db.write('employees.xlsx')
conn.close()
日志记录
利用Pylightxl轻松创建日志报告,定期汇总系统状态到Excel,便于分析与审查。
典型生态项目
尽管Pylightxl本身聚焦于核心的Excel读写能力,其灵活性使其容易与其他Python生态系统内的数据分析工具集成,如结合Flask或Django用于web应用中的数据报表生成,或者在自动化脚本中作为数据交互的桥梁,连接不同的业务流程。
- Web服务集成: 在Django框架下,可以使用Pylightxl来生成动态的Excel报表供用户下载,简化后端处理逻辑。
- 数据分析辅助: 虽然Pandas提供更丰富的数据分析功能,但对于一些基本的数据导出任务,Pylightxl提供了足够且更快的解决方案,特别是在资源受限的环境中。
通过这些应用场景,可以看出Pylightxl虽然简约,但极其实用,尤其适合那些希望避免大型库带来的负担,而又需要快速实现Excel文件处理的开发者。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355