Apache Sling Testing PaxExam 指南
2024-08-07 10:09:05作者:郁楠烈Hubert
1. 项目目录结构及介绍
在Apache Sling Testing PaxExam项目中,主要的源代码位于src/main/java目录下,其中org.apache.sling.testing.paxexam包包含了核心测试支持类。项目的目录结构大致如下:
.
├── pom.xml // Maven 构建文件
└── src
└── main
└── java
└── org
└── apache
└── sling
└── testing
└── paxexam
├── TestSupport.java // 主要的测试支持类
...
TestSupport.java是关键文件,它提供了一套用于在Pax Exam环境中进行Sling集成测试的支持。
2. 项目的启动文件介绍
由于该项目是一个库,没有独立的可执行文件。启动测试通常是在其他依赖于Apache Sling Testing PaxExam的项目中通过运行Maven或类似的构建工具来实现。例如,在一个使用这个库进行集成测试的Sling应用中,你会创建一个JUnit测试类并继承自TestSupport,然后调用相关方法来配置和启动Sling实例。
以下是一个简化版的测试类示例:
import org.apache.sling.testing.paxexam.TestSupport;
public class MySlingIntegrationTest extends TestSupport {
@Override
protected void setUp() throws Exception {
super.setUp();
// 在这里添加特定的测试设置
}
@Override
protected void tearDown() throws Exception {
super.tearDown();
// 清理工作
}
@Test
public void myTest() {
// 进行实际的测试
}
}
setUp()和tearDown()方法会被Pax Exam自动调用以准备和清理测试环境。
3. 项目的配置文件介绍
Apache Sling Testing PaxExam项目本身并不包含特定的配置文件,因为它是一个库,它的配置主要发生在使用它的项目中。配置通常包括定义Pax Exam选项(如Karaf特征、系统属性等)以及在测试类中设定Sling的启动参数。
例如,你可以使用以下Maven插件配置Pax Exam运行时的行为:
<build>
<plugins>
<plugin>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>maven-paxexam-plugin</artifactId>
<version>${pax.exam.version}</version>
<configuration>
<!-- 配置你的选项 -->
<options>
<option>
<name>bootDelegationPackages</name>
<value>com.example.packagetoinclude</value>
</option>
</options>
</configuration>
</plugin>
</plugins>
</build>
或者,在测试类中通过重写configureExamContainer方法来定制容器配置:
@Override
protected Option[] configure() {
return options(
karafFeature("sling", "your.sling.feature.version"),
systemProperty("sling.launchpad").value("path/to/launchpad")
);
}
这些配置将决定如何启动Sling实例以及它的行为。
请注意,上述代码示例仅作为概念性说明,你需要根据具体需求调整配置。完整的配置选项和用法应参照官方文档。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
195
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692