Apache Sling Testing PaxExam 指南
2024-08-07 10:09:05作者:郁楠烈Hubert
1. 项目目录结构及介绍
在Apache Sling Testing PaxExam项目中,主要的源代码位于src/main/java目录下,其中org.apache.sling.testing.paxexam包包含了核心测试支持类。项目的目录结构大致如下:
.
├── pom.xml // Maven 构建文件
└── src
└── main
└── java
└── org
└── apache
└── sling
└── testing
└── paxexam
├── TestSupport.java // 主要的测试支持类
...
TestSupport.java是关键文件,它提供了一套用于在Pax Exam环境中进行Sling集成测试的支持。
2. 项目的启动文件介绍
由于该项目是一个库,没有独立的可执行文件。启动测试通常是在其他依赖于Apache Sling Testing PaxExam的项目中通过运行Maven或类似的构建工具来实现。例如,在一个使用这个库进行集成测试的Sling应用中,你会创建一个JUnit测试类并继承自TestSupport,然后调用相关方法来配置和启动Sling实例。
以下是一个简化版的测试类示例:
import org.apache.sling.testing.paxexam.TestSupport;
public class MySlingIntegrationTest extends TestSupport {
@Override
protected void setUp() throws Exception {
super.setUp();
// 在这里添加特定的测试设置
}
@Override
protected void tearDown() throws Exception {
super.tearDown();
// 清理工作
}
@Test
public void myTest() {
// 进行实际的测试
}
}
setUp()和tearDown()方法会被Pax Exam自动调用以准备和清理测试环境。
3. 项目的配置文件介绍
Apache Sling Testing PaxExam项目本身并不包含特定的配置文件,因为它是一个库,它的配置主要发生在使用它的项目中。配置通常包括定义Pax Exam选项(如Karaf特征、系统属性等)以及在测试类中设定Sling的启动参数。
例如,你可以使用以下Maven插件配置Pax Exam运行时的行为:
<build>
<plugins>
<plugin>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>maven-paxexam-plugin</artifactId>
<version>${pax.exam.version}</version>
<configuration>
<!-- 配置你的选项 -->
<options>
<option>
<name>bootDelegationPackages</name>
<value>com.example.packagetoinclude</value>
</option>
</options>
</configuration>
</plugin>
</plugins>
</build>
或者,在测试类中通过重写configureExamContainer方法来定制容器配置:
@Override
protected Option[] configure() {
return options(
karafFeature("sling", "your.sling.feature.version"),
systemProperty("sling.launchpad").value("path/to/launchpad")
);
}
这些配置将决定如何启动Sling实例以及它的行为。
请注意,上述代码示例仅作为概念性说明,你需要根据具体需求调整配置。完整的配置选项和用法应参照官方文档。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217