Rook Ceph 集群在 Multus 网络环境下部署问题解析
问题背景
在使用 Rook Ceph 存储系统时,许多用户会选择 Multus CNI 插件来实现多网络接口支持。然而,在实际部署过程中,网络配置不当可能导致 Ceph 集群无法正常初始化。本文将深入分析一个典型的多网络环境下 Rook Ceph 集群部署失败案例,并提供解决方案。
现象描述
用户在使用 Multus 为 Rook Ceph 配置多网络接口时,遇到了集群初始化失败的问题。具体表现为:
- 监控(mon) Pod 启动缓慢且不同步,mon-a 首先启动,几分钟后才出现 mon-b,然后是 mon-c
- 即使所有监控 Pod 都运行后,管理(mgr)和对象存储守护进程(osd) Pod 也未能部署
- 集群状态停滞,无法完成初始化
根本原因分析
经过深入排查,发现问题主要出在 NetworkAttachmentDefinition (NAD) 的配置上:
-
路由配置不当:NAD 中配置了默认路由
{ "dst": "0.0.0.0/0" },这会导致所有流量(包括 Kubernetes 服务网络流量)都通过存储网络接口,而非预期的 Pod 接口 -
网络隔离不足:存储网络被配置为具有互联网访问能力,而实际上 Ceph 集群的通信应该保持在 Kubernetes 集群内部
-
Multus 验证失败:由于环境限制,Multus 验证测试未能通过,表明网络配置可能存在问题
解决方案
1. 修正 NetworkAttachmentDefinition 配置
正确的 NAD 配置应避免设置默认路由,确保 Kubernetes 服务网络流量仍通过 Pod 主接口。以下是修正后的配置示例:
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: ceph-public
namespace: rook-ceph
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "enp6s0",
"mode": "bridge",
"ipam": {
"type": "host-local",
"subnet": "10.12.0.0/24",
"rangeStart": "10.12.0.11",
"rangeEnd": "10.12.0.250"
}
}'
关键修改点:
- 移除了
routes部分,特别是默认路由配置 - 移除了
gateway配置,确保网络保持私有性
2. 实施网络验证
在部署前,建议执行 Multus 验证测试,确保网络配置正确。虽然在某些资源受限的环境中可能无法完全通过验证,但至少应确保:
- 基本网络连通性
- DNS 解析功能正常
- 跨节点通信能力
3. 监控部署过程
部署时应密切监控以下组件状态:
- 监控 Pod:确保三个 mon Pod 在合理时间内全部启动并形成仲裁
- 管理 Pod:检查 mgr Pod 是否在 mon 就绪后正常启动
- OSD 准备 Job:确认 OSD 准备作业是否成功完成
- OSD Pod:验证 OSD Pod 是否根据存储设备配置正确部署
最佳实践建议
-
网络规划:
- 为 Ceph 公共网络和集群网络使用独立的子网
- 确保网络范围不与 Kubernetes 服务或 Pod 网络重叠
- 考虑使用 VLAN 隔离存储网络流量
-
Multus 配置:
- 避免在存储网络 NAD 中配置默认路由
- 为关键组件配置适当的网络策略
- 考虑使用网络隔离功能增强安全性
-
资源准备:
- 确保节点有足够资源运行 Multus 和 Ceph 组件
- 为存储网络预留足够的 IP 地址
- 预先配置好物理网络设备
总结
在 Kubernetes 环境中部署 Rook Ceph 并使用 Multus 实现多网络支持时,网络配置的准确性至关重要。通过本文的分析和解决方案,用户可以避免常见的网络配置陷阱,确保 Ceph 集群能够顺利初始化并稳定运行。记住,存储网络应该保持私有性,不应配置为具有互联网访问能力,同时要确保 Kubernetes 服务网络流量仍通过 Pod 主接口传输。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00