Requests库中Decimal类型的JSON序列化问题解析
问题背景
在使用Python的Requests库发送HTTP请求时,开发者可能会遇到一个常见问题:当请求体包含Decimal类型数据时,如果没有安装simplejson库,就会抛出"TypeError: Object of type Decimal is not JSON serializable"异常。这个问题源于Python标准库json模块对Decimal类型的处理方式。
技术原理
Python标准库中的json模块默认不支持Decimal类型的序列化,因为Decimal不是JSON规范中的原生数据类型。当Requests库使用标准json模块序列化数据时,遇到Decimal对象就会抛出异常。
而simplejson作为json模块的替代品,提供了更全面的数据类型支持,包括Decimal类型。当simplejson安装后,Requests库会自动优先使用它,从而能够正确处理Decimal类型的数据。
解决方案比较
方案一:安装simplejson
这是最简单的解决方案,只需执行:
pip install simplejson
安装后,Requests会自动使用simplejson进行序列化,Decimal类型会被正确处理。
方案二:自定义JSON编码器
如果不希望依赖simplejson,可以自定义JSON编码器:
import json
from decimal import Decimal
import requests
class DecimalEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Decimal):
return float(obj)
return super().default(obj)
data = {'key': Decimal('0.0')}
json_data = json.dumps(data, cls=DecimalEncoder)
response = requests.post(url, data=json_data, headers={'Content-Type': 'application/json'})
方案三:手动转换Decimal为float
在构建请求数据时,手动将Decimal转换为float:
data = {'key': float(Decimal('0.0'))}
response = requests.post(url, json=data)
性能考量
simplejson在大多数情况下性能优于标准json模块,特别是在处理复杂数据结构时。然而,对于简单数据,差异可能不明显。如果项目已经大量使用Decimal类型,引入simplejson是更合理的选择。
最佳实践建议
- 如果项目频繁使用Decimal类型,建议直接安装simplejson
- 对于临时性需求,可以使用自定义编码器或手动转换
- 在性能敏感场景下,建议进行基准测试,选择最适合的序列化方案
- 确保团队所有成员使用相同的序列化方案,避免环境差异导致的问题
总结
Requests库的JSON序列化行为会根据可用依赖自动调整,理解这一机制有助于开发者更好地处理特殊数据类型。Decimal类型的问题只是JSON序列化中的一个典型案例,类似的问题可能出现在其他非标准JSON数据类型上。掌握这些解决方案,能够使开发者在处理复杂数据时更加得心应手。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00