TVM项目中RemoveUnusedOutputs优化器的异常行为分析
在深度学习编译器TVM的使用过程中,我们发现了一个关于RemoveUnusedOutputs优化器的异常行为,以及一个与结构相等性检查相关的bug。本文将详细分析这两个问题的技术细节及其解决方案。
RemoveUnusedOutputs优化器的问题
RemoveUnusedOutputs是TVM中的一个Relax优化器,其主要功能是移除未被使用的函数输出。但在实际使用中,该优化器在某些情况下会产生不符合预期的结果。
以一个具体案例为例,原始IR模块包含多个TIR原语函数和一个返回三个张量的Relax函数。经过RemoveUnusedOutputs优化后,原本应该保留的张量输出被替换成了NaN值,这显然不是预期的优化行为。
深入分析发现,问题的根源在于优化器在确定哪些输出被使用时,仅收集了通过TupleGetItem显式访问元组元素的情况。如果整个元组被直接使用(如作为函数返回值),优化器会错误地认为所有元素都未被使用,从而用NaN占位符替换它们。
结构相等性检查的NaN问题
另一个相关问题是TVM的结构相等性检查(assert_structural_equal)在处理NaN值时的不一致性。测试发现,即使两个完全相同的IR模块,如果包含NaN值,结构相等性检查也会错误地判定它们不相等。
这是由于TVM内部对浮点数的比较采用了相对误差方法(abs(lhs-rhs) < 1e9),而NaN值与任何值(包括它自己)的比较结果都是false。这种实现方式导致包含NaN的IR模块无法正确通过结构相等性验证。
解决方案
针对这两个问题,TVM社区已经提出了相应的修复方案:
-
对于RemoveUnusedOutputs优化器,修复方案改进了使用情况收集逻辑,确保能够正确识别所有元组元素的使用情况,避免错误地用NaN替换实际使用的输出。
-
对于结构相等性检查,修复方案增加了对NaN值的特殊处理,确保两个NaN值能够被正确识别为相等。
技术启示
这个案例给我们带来几个重要的技术启示:
-
编译器优化器的实现需要考虑所有可能的使用场景,特别是边界情况。
-
浮点数的特殊值(如NaN)在编译器内部处理时需要格外小心,常规的比较逻辑可能不适用。
-
测试用例应当覆盖各种边界情况,包括特殊值和非常规使用模式。
TVM作为深度学习编译器,其正确性对下游应用至关重要。这类问题的发现和修复有助于提高编译器的稳定性和可靠性,为深度学习模型的部署提供更坚实的基础设施支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00