TVM项目中RemoveUnusedOutputs优化器的异常行为分析
在深度学习编译器TVM的使用过程中,我们发现了一个关于RemoveUnusedOutputs优化器的异常行为,以及一个与结构相等性检查相关的bug。本文将详细分析这两个问题的技术细节及其解决方案。
RemoveUnusedOutputs优化器的问题
RemoveUnusedOutputs是TVM中的一个Relax优化器,其主要功能是移除未被使用的函数输出。但在实际使用中,该优化器在某些情况下会产生不符合预期的结果。
以一个具体案例为例,原始IR模块包含多个TIR原语函数和一个返回三个张量的Relax函数。经过RemoveUnusedOutputs优化后,原本应该保留的张量输出被替换成了NaN值,这显然不是预期的优化行为。
深入分析发现,问题的根源在于优化器在确定哪些输出被使用时,仅收集了通过TupleGetItem显式访问元组元素的情况。如果整个元组被直接使用(如作为函数返回值),优化器会错误地认为所有元素都未被使用,从而用NaN占位符替换它们。
结构相等性检查的NaN问题
另一个相关问题是TVM的结构相等性检查(assert_structural_equal)在处理NaN值时的不一致性。测试发现,即使两个完全相同的IR模块,如果包含NaN值,结构相等性检查也会错误地判定它们不相等。
这是由于TVM内部对浮点数的比较采用了相对误差方法(abs(lhs-rhs) < 1e9),而NaN值与任何值(包括它自己)的比较结果都是false。这种实现方式导致包含NaN的IR模块无法正确通过结构相等性验证。
解决方案
针对这两个问题,TVM社区已经提出了相应的修复方案:
-
对于RemoveUnusedOutputs优化器,修复方案改进了使用情况收集逻辑,确保能够正确识别所有元组元素的使用情况,避免错误地用NaN替换实际使用的输出。
-
对于结构相等性检查,修复方案增加了对NaN值的特殊处理,确保两个NaN值能够被正确识别为相等。
技术启示
这个案例给我们带来几个重要的技术启示:
-
编译器优化器的实现需要考虑所有可能的使用场景,特别是边界情况。
-
浮点数的特殊值(如NaN)在编译器内部处理时需要格外小心,常规的比较逻辑可能不适用。
-
测试用例应当覆盖各种边界情况,包括特殊值和非常规使用模式。
TVM作为深度学习编译器,其正确性对下游应用至关重要。这类问题的发现和修复有助于提高编译器的稳定性和可靠性,为深度学习模型的部署提供更坚实的基础设施支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00