Yomitan与Anki Connect性能优化:解决词典查询延迟问题
2025-07-09 00:26:43作者:鲍丁臣Ursa
问题背景
在日语学习工具Yomitan与Anki Connect的集成使用过程中,用户报告了显著的性能延迟现象。当启用"检查卡片重复项"功能时,查询"なければならない"这类复杂词汇的总耗时达到8秒,其中与Anki Connect的通信就占用了约5秒。这严重影响了用户体验,特别是在高频查询场景下。
技术分析
通过详细的性能剖析,我们发现延迟主要来自以下几个关键环节:
-
Anki Connect请求结构问题
- 系统会发起4次API调用:版本检查、两次canAddNotes调用(分别允许和不允许重复项)、以及一个multi组合查询
- canAddNotes请求携带了过多冗余数据,包括完整的词典定义内容(ExtraDefinitions等字段)
-
Anki Connect内部处理瓶颈
- createNote方法的算法复杂度达到O(n²),其中n是请求包含的字段数量
- 实际重复检查仅需要第一个字段的值,但当前实现会处理所有传入字段
-
网络传输开销
- 大尺寸的请求体(特别是包含完整词典数据的请求)导致显著的序列化/反序列化开销
- Windows平台下可能存在localhost解析延迟问题
优化方案
基于上述分析,我们提出以下优化措施:
-
精简请求负载
- 修改canAddNotes调用,仅保留必要的字段(如key字段)
- 移除ExtraDefinitions等非必要词典数据
- 实现请求体压缩传输
-
优化Anki Connect处理逻辑
- 改进createNote方法,提前终止非必要字段处理
- 实现字段级缓存机制,避免重复计算
-
客户端优化
- 实现请求批处理机制,减少网络往返次数
- 添加本地结果缓存,减少重复查询
实施效果
经过上述优化后,预期可获得以下改进:
- 总查询时间从8秒降至3秒以内
- Anki Connect通信时间从5秒降至500毫秒以内
- 系统资源消耗降低30%以上
技术启示
这一案例展示了几个重要的技术原则:
- 网络通信中,请求体的精简往往比想象中更重要
- 即使是简单的API调用,不当的实现也可能导致显著的性能问题
- 端到端的性能分析是解决复杂系统问题的关键
对于开发者而言,这一优化过程也提醒我们:在开发类似集成系统时,应该从一开始就考虑性能因素,特别是在处理可能包含大量数据的教育类应用场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
438
3.33 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
817
385
Ascend Extension for PyTorch
Python
246
285
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871