MinerU项目在AMD ROCm平台上的性能优化实践
2025-05-04 01:57:36作者:田桥桑Industrious
项目背景
MinerU是一个基于深度学习的PDF文档解析工具,能够对文档中的文本、表格、公式等元素进行智能识别和结构化处理。该项目最初主要针对CPU和NVIDIA GPU平台进行优化,但在AMD ROCm平台上的运行性能存在明显不足。
问题现象
用户在使用AMD MI210专业计算卡运行MinerU时发现,7页PDF文档的解析时间达到142.36秒,远高于CPU平台的68.14秒。性能分析显示,OCR识别环节耗时最为严重,成为性能瓶颈。
技术分析
经过深入调查,发现性能问题主要由以下几个因素导致:
-
Torch版本冲突:用户最初安装了CPU版本的PyTorch,后覆盖安装ROCm版本,可能导致底层库冲突。
-
OCR引擎限制:早期版本使用的PaddleOCR对AMD ROCm平台支持不足,特别是仅支持ROCm 4.0版本,而现代AMD GPU需要ROCm 6.x版本。
-
模型适配问题:DocLayoutYOLO模型在ROCm平台上存在性能异常,卷积运算效率低下,即使GPU占用率达到100%,处理速度仍不理想。
解决方案
-
版本升级:
- 完全卸载原有PyTorch安装
- 安装专为ROCm 6.x优化的PyTorch版本
- 升级到MinerU 1.3.0版本,该版本将所有模型切换为Torch实现
-
模型替换:
- 将DocLayout模型替换为基础YOLOv10模型(yolov10l_ft.pt)
- 这一调整使布局预测速度从2.27页/秒提升到27.03页/秒
-
OCR引擎优化:
- 新版采用RapidOCR 2.0.5,完全基于Torch实现
- OCR识别速度显著提升,达到291.43项/秒
性能对比
优化前后关键指标对比:
| 指标 | 优化前 | 优化后 |
|---|---|---|
| 布局预测速度 | 2.27页/秒 | 27.03页/秒 |
| OCR识别速度 | 35.21项/秒 | 291.43项/秒 |
| 7页解析时间 | 142.36秒 | 显著降低 |
实践建议
-
环境配置:
- 推荐使用Ubuntu 24.04.2系统
- 安装ROCm 6.3.4或更新版本
- 使用Python 3.12环境
-
性能监控:
- 使用rocm-smi工具监控GPU使用情况
- 对关键模块进行性能剖析
-
模型选择:
- 根据实际需求选择合适的模型版本
- 在ROCm平台上优先测试基础YOLOv10模型
未来展望
随着ROCm生态的不断完善和MinerU项目的持续优化,AMD GPU平台上的文档解析性能有望进一步提升。建议关注:
- DocLayoutYOLO模型对ROCm平台的适配优化
- ONNX Runtime在ROCm平台上的性能改进
- 新一代OCR引擎的持续演进
通过本次优化实践,MinerU在AMD ROCm平台上实现了显著的性能提升,为使用AMD硬件加速的用户提供了更好的体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1