Apache Linkis中Spark引擎SecureRandom随机数生成阻塞问题分析
在Apache Linkis 1.1.2版本中,当用户执行PySpark任务时,可能会遇到Java线程阻塞的问题。这个问题源于SecureRandom字符串生成过程中的熵源不足,导致任务执行线程在NativePRNG的随机数生成环节被挂起。
问题现象
从线程堆栈可以看到,TaskExecution-Thread-1线程在调用SecureRandomStringUtils.random方法时进入了RUNNABLE状态,但实际上被阻塞在FileInputStream.readBytes的本地方法调用上。这种情况通常发生在虚拟机环境中,当系统熵池(entropy pool)不足时,/dev/random设备会阻塞读取操作,直到收集到足够的环境噪声。
技术背景
SecureRandom是Java提供的密码学安全伪随机数生成器(CSPRNG),在Linux系统上默认使用/dev/random作为熵源。与/dev/urandom不同,/dev/random会严格保证随机数的不可预测性,当熵池耗尽时会阻塞读取操作。在虚拟化环境中,由于硬件噪声源有限,这个问题尤为突出。
Linkis的Spark引擎插件使用SecureRandom生成Py4j通信令牌,这是Spark Python执行器与JVM交互的安全机制的重要组成部分。虽然使用安全随机数是正确的安全实践,但在某些环境下可能导致任务执行停滞。
解决方案
对于这个问题,社区提出了几种解决方案:
-
JVM参数调整:通过设置-Djava.security.egd=file:/dev/./urandom参数,让JVM使用非阻塞的熵源。这个方案简单有效,但会略微降低随机数的密码学强度。
-
系统级熵源增强:在宿主机上安装haveged等熵收集守护进程,持续为系统提供足够的熵。这种方法既保持了安全性又避免了阻塞,是生产环境的推荐方案。
-
配置开关:为Linkis增加安全随机数生成的可配置选项,允许用户在安全性和可用性之间做出选择。这需要修改SecureRandomStringUtils的实现,使其能够根据配置选择使用SecureRandom或普通Random。
最佳实践建议
对于不同场景的用户,我们建议:
- 安全性优先环境:保持默认的SecureRandom配置,同时部署haveged服务确保熵源充足。
- 资源受限环境:使用JVM参数切换到/dev/urandom,并评估这对业务安全性的影响。
- 开发测试环境:可以考虑完全关闭安全随机数生成,使用普通随机数替代。
这个问题也提醒我们,在分布式系统开发中,需要特别注意那些可能阻塞线程的操作,特别是在与底层系统交互时。良好的做法是为这类操作设置超时机制,或者提供备选方案以保证系统的可用性。
总结
Apache Linkis作为大数据中间件,需要兼顾安全性和稳定性。这个SecureRandom阻塞问题的解决过程展示了如何在两者之间寻找平衡点。随着Linkis的持续发展,类似的系统级优化将会不断被引入,为用户提供更可靠的数据服务体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









