PyTorch Lightning项目中GAN训练时未使用参数导致崩溃的解决方案
2025-05-05 16:42:46作者:申梦珏Efrain
问题背景
在使用PyTorch Lightning框架训练生成对抗网络(GAN)模型时,开发者遇到了一个常见但棘手的问题:当不使用ddp_find_unused_parameters_true
策略时,训练过程会崩溃并提示模型存在未使用的参数。而当启用该策略后,虽然训练可以正常进行,但实际上并没有真正未使用的参数。
问题现象
具体表现为:
- 禁用
ddp_find_unused_parameters_true
时,训练崩溃并报错"模型有未使用的参数" - 启用该策略后,训练正常进行但无实际未使用参数
- 问题根源与
.detach()
操作有关,移除该操作后问题消失
代码分析
问题出现在训练步骤中的以下关键代码段:
def training_step(self, batch, batch_idx):
g_opt, d_opt = self.optimizers()
src_img, drv_img = batch["src"], batch["drv"]
gen_img = self.generator(src_img, drv_img)
errD = self.gan_loss(drv_img, gen_img.detach(), opt_d=True)["errD"]
d_opt.zero_grad(set_to_none=True)
self.manual_backward(errD, retain_graph=True)
d_opt.step()
gan_loss = self.gan_loss(drv_img, gen_img, opt_d=False)
perceptual_loss = self.perceptual_loss(drv_img, gen_img)
errG = gan_loss["errG_GAN"] + gan_loss["errG_FM"] + perceptual_loss["vgg_imagenet"] + perceptual_loss["vgg_face"]
g_opt.zero_grad(set_to_none=True)
self.manual_backward(errG)
g_opt.step()
问题根源
问题的根本原因在于PyTorch Lightning的分布式数据并行(DDP)模式对计算图的严格检查。当使用.detach()
操作时,会创建一个新的张量,该张量不再保留原始计算图的梯度信息。在DDP模式下,框架会检查所有参数是否都参与了前向传播和反向传播的计算图构建。
解决方案
针对这个问题,有以下几种解决方案:
-
保留detach操作并使用ddp_find_unused_parameters_true策略
- 这是最简单的解决方案,但可能会带来轻微的性能开销
- 适用于快速验证和原型开发阶段
-
重构计算图以避免detach操作
- 可以尝试将判别器和生成器的训练步骤分开
- 使用两个独立的前向传播过程,而不是一个前向传播后detach
-
自定义训练循环
- 实现更精细的控制,手动管理梯度计算
- 适用于高级用户和对性能有严格要求的场景
最佳实践建议
对于GAN训练,推荐以下实践:
- 将生成器和判别器的训练步骤分离到不同的
training_step
中 - 使用Lightning的
Manual Optimization
模式进行更精细的控制 - 考虑使用
LightningModule
的optimizer_step
钩子来自定义优化过程 - 对于复杂模型,合理使用
retain_graph
参数
性能考量
虽然ddp_find_unused_parameters_true
策略可以解决问题,但它会带来额外的性能开销,因为:
- 需要在每次迭代中扫描所有参数
- 增加了进程间通信的开销
- 可能影响梯度同步的效率
因此,对于生产环境和大规模训练,建议采用重构计算图的方法来彻底解决问题。
总结
PyTorch Lightning框架中的DDP模式对计算图的完整性检查非常严格,这在GAN等复杂模型的训练中可能会带来挑战。理解计算图的构建方式和梯度传播机制是解决这类问题的关键。通过合理设计训练流程和计算图结构,可以既保持代码的简洁性,又避免性能损失。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133