Gubbins 技术文档
1. 安装指南
1.1 依赖项要求
在安装 Gubbins 之前,请确保系统中已安装以下依赖项:
- 系统工具:Python >=3.8、pip3、make、autoconf、libtool、gcc、check 等。
- Python 模块:Biopython (>1.59)、DendroPy (>=4.0)、Scipy、Numpy、Multiprocessing、Numba。
- 系统软件包:RAxML、IQTree、RAxML-NG、FastTree、Rapidnj。
1.2 推荐安装方法 - conda
使用 conda 安装 Gubbins 是最简单的方式。首先,确保已安装 conda,并添加必要的 channels:
conda config --add channels r
conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda
conda install gubbins
1.3 从源码安装
如果你希望从源码安装 Gubbins,请按照以下步骤操作:
- 克隆或下载 Gubbins 的源码:
git clone https://github.com/nickjcroucher/gubbins cd gubbins
- 配置并安装:
autoreconf -i ./configure [--prefix=$PREFIX] make [sudo] make install cd python [sudo] python3 -m pip install [--prefix=$PREFIX] .
1.4 使用虚拟机安装
如果你在 Windows 系统上运行 Gubbins,可以通过虚拟机来安装。首先,安装 VirtualBox,然后加载虚拟机镜像:
- 下载虚拟机镜像:ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-vm.latest.ova
- 使用 VirtualBox 的“文件 -> 导入设备”菜单选项加载镜像。
- 虚拟机启动后,使用 root 密码“manager”登录。
2. 项目的使用说明
2.1 基本使用
使用默认设置运行 Gubbins:
run_gubbins.py [FASTA alignment]
2.2 高级选项
Gubbins 提供了多种高级选项,可以通过查看手册来了解详细信息。
3. 项目 API 使用文档
3.1 主要功能
Gubbins 的主要功能是通过迭代识别包含高密度碱基替换的位点,并在这些区域之外构建系统发育树。
3.2 参数说明
--mar
:使用边际祖先重建(默认使用联合祖先重建)。--prefix
:指定输出文件的前缀。--threads
:指定使用的线程数。
4. 项目安装方式
4.1 通过 conda 安装
如前所述,使用 conda 安装是最简单的方式:
conda install gubbins
4.2 通过 apt 安装(适用于 Ubuntu/Debian)
在 Ubuntu 或 Debian 系统上,可以使用 apt 安装 Gubbins:
sudo apt-get install gubbins
4.3 从源码安装
从源码安装 Gubbins 的步骤已在 1.3 节中详细说明。
4.4 使用虚拟机安装
虚拟机安装方式适用于 Windows 用户,具体步骤已在 1.4 节中说明。
5. 测试
安装完成后,可以通过以下命令运行测试:
make check
6. 反馈与问题
如果在使用过程中遇到问题,请在 issues 页面 提交问题。
7. 引用
如果你使用了 Gubbins,请引用以下文献:
Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S.R. "Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins". doi:10.1093/nar/gku1196, Nucleic Acids Research, 2014.
8. 进一步信息
更多关于 Gubbins 的信息,请访问 Gubbins 网页。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









