Gubbins 技术文档
1. 安装指南
1.1 依赖项要求
在安装 Gubbins 之前,请确保系统中已安装以下依赖项:
- 系统工具:Python >=3.8、pip3、make、autoconf、libtool、gcc、check 等。
- Python 模块:Biopython (>1.59)、DendroPy (>=4.0)、Scipy、Numpy、Multiprocessing、Numba。
- 系统软件包:RAxML、IQTree、RAxML-NG、FastTree、Rapidnj。
1.2 推荐安装方法 - conda
使用 conda 安装 Gubbins 是最简单的方式。首先,确保已安装 conda,并添加必要的 channels:
conda config --add channels r
conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda
conda install gubbins
1.3 从源码安装
如果你希望从源码安装 Gubbins,请按照以下步骤操作:
- 克隆或下载 Gubbins 的源码:
git clone https://github.com/nickjcroucher/gubbins cd gubbins - 配置并安装:
autoreconf -i ./configure [--prefix=$PREFIX] make [sudo] make install cd python [sudo] python3 -m pip install [--prefix=$PREFIX] .
1.4 使用虚拟机安装
如果你在 Windows 系统上运行 Gubbins,可以通过虚拟机来安装。首先,安装 VirtualBox,然后加载虚拟机镜像:
- 下载虚拟机镜像:ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-vm.latest.ova
- 使用 VirtualBox 的“文件 -> 导入设备”菜单选项加载镜像。
- 虚拟机启动后,使用 root 密码“manager”登录。
2. 项目的使用说明
2.1 基本使用
使用默认设置运行 Gubbins:
run_gubbins.py [FASTA alignment]
2.2 高级选项
Gubbins 提供了多种高级选项,可以通过查看手册来了解详细信息。
3. 项目 API 使用文档
3.1 主要功能
Gubbins 的主要功能是通过迭代识别包含高密度碱基替换的位点,并在这些区域之外构建系统发育树。
3.2 参数说明
--mar:使用边际祖先重建(默认使用联合祖先重建)。--prefix:指定输出文件的前缀。--threads:指定使用的线程数。
4. 项目安装方式
4.1 通过 conda 安装
如前所述,使用 conda 安装是最简单的方式:
conda install gubbins
4.2 通过 apt 安装(适用于 Ubuntu/Debian)
在 Ubuntu 或 Debian 系统上,可以使用 apt 安装 Gubbins:
sudo apt-get install gubbins
4.3 从源码安装
从源码安装 Gubbins 的步骤已在 1.3 节中详细说明。
4.4 使用虚拟机安装
虚拟机安装方式适用于 Windows 用户,具体步骤已在 1.4 节中说明。
5. 测试
安装完成后,可以通过以下命令运行测试:
make check
6. 反馈与问题
如果在使用过程中遇到问题,请在 issues 页面 提交问题。
7. 引用
如果你使用了 Gubbins,请引用以下文献:
Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S.R. "Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins". doi:10.1093/nar/gku1196, Nucleic Acids Research, 2014.
8. 进一步信息
更多关于 Gubbins 的信息,请访问 Gubbins 网页。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00