如何使用 phoenix_seo: 搜索引擎优化框架实战指南
2024-09-12 22:36:12作者:房伟宁
项目介绍
phoenix_seo 是一个专为 Phoenix 应用设计的框架,旨在简化网站的搜索引擎优化过程,并提高站点在互联网上分享时显示的丰富结果。通过提供一套结构化的工具,它帮助开发者更容易地针对搜索引擎调整网页内容,从而增加页面的可见性与访问量。
项目快速启动
安装
首先,确保你的 Phoenix 项目已经准备就绪。要在项目中集成 phoenix_seo,请在你的 mix.exs
文件的依赖项列表中添加以下条目:
defp deps do
[
{:phoenix_seo, "~> 0.1.10"}
# 其他依赖...
]
end
然后运行 mix deps.get
来安装新依赖。
配置
接下来,在你的 Phoenix 项目的 Web 目录下创建一个 SEO
模块(如果尚未存在),例如 lib/my_app_web/seo.ex
,并配置默认值和各个 SEO 组件:
# lib/my_app_web/seo.ex
defmodule MyAppWeb.SEO do
use MyAppWeb, :verified_routes
use SEO,
json_library: Jason,
open_graph: SEO.OpenGraph.build(description: "默认描述"),
twitter: SEO.Twitter.build(site: "@your_twitter_handle")
# 更多配置...
end
end
实体实现
假设有一个 Article
结构体,你需要为其定义 SEO 实现:
# lib/my_app/article.ex
defmodule MyApp.Article do
defstruct [:id, :title, :description, :published_at]
end
# 在相应的模块里定义 SEO 行为
defimpl SEO.OpenGraph.Build, for: MyApp.Article do
use MyAppWeb, :verified_routes
def build(article), do:
SEO.OpenGraph.build(
title: article.title,
description: article.description,
url: url_path(article),
image: image_url(article)
)
end
defp url_path(article), do: path_for(article, MyAppWeb.ArticleController, :show, id: article.id)
defp image_url(article), do: static_url("/images/articles/#{article.id}.png")
end
使用实例
在控制器中:
# lib/my_app_web/controllers/article_controller.ex
def show(conn, %{"id" => id}) do
article = fetch_article(id)
conn
|> assign(:article, article)
|> SEO.assign(article)
|> render("show.html.eex")
end
在布局文件或LiveView中渲染 SEO 元素:
<!-- 布局文件 head 部分 -->
<SEO.juice conn=[@conn] config=[MyAppWeb.SEO.config()] page_title=[@page_title] />
应用案例和最佳实践
- 动态标题和元数据:根据页面内容动态生成标题和描述,以提高相关性和用户体验。
- 图片优化:确保每个页面上的图像都有对应的 Open Graph 和 Twitter Card 标签,增加社交媒体吸引力。
- 面包屑导航:实施面包屑导航的 SEO,便于用户和搜索引擎理解页面层次。
典型生态项目
虽然直接相关的典型生态项目信息没有直接提供,但在实际应用中,phoenix_seo
经常与其他增强用户体验的Phoenix插件结合使用,比如phoenix_live_view
来优化实时页面的SEO,或者与静态站点生成器如edeliver
一起工作,生成对搜索引擎友好的静态版本。
通过遵循这些步骤,你的 Phoenix 应用将准备好拥抱更好的搜索引擎优化策略,提升在线可见度和用户互动。记住,良好的SEO实践不仅限于技术设置,高质量的内容同样重要。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133