Naabu库在Linux系统下出现"no free handlers"错误的分析与解决
问题背景
在使用Naabu作为库进行端口扫描时,开发人员遇到了一个平台相关的问题:相同的代码在Windows系统上能够正常运行并返回预期结果,但在Linux系统上却会抛出"no free handlers"错误。这种情况表明Naabu在处理系统资源时存在平台差异性问题。
问题分析
"no free handlers"错误通常与系统资源限制有关,特别是在Linux环境下。这个错误表明Naabu在尝试创建新的网络连接或处理程序时,系统已经达到了最大允许的文件描述符数量限制。
根本原因
-
文件描述符限制:Linux系统对每个进程能够打开的文件描述符数量有默认限制,通常为1024。而Naabu在进行大规模扫描时会创建大量连接,容易达到这个限制。
-
资源未及时释放:代码中虽然使用了
defer naabuRunner.Close(),但在循环中创建多个Runner实例时,资源释放可能不及时。 -
平台差异:Windows和Linux在资源管理机制上存在差异,Windows的文件描述符限制通常更高,因此同样代码在Windows上可能不会出现问题。
解决方案
1. 提高系统文件描述符限制
对于Linux系统,可以通过以下命令临时提高限制:
ulimit -n 65535
或者永久修改:
echo "* soft nofile 65535" >> /etc/security/limits.conf
echo "* hard nofile 65535" >> /etc/security/limits.conf
2. 优化代码结构
修改代码结构,避免在循环中创建多个Runner实例,改为使用单个Runner实例扫描所有目标:
func main() {
var HostPortList []string
targets := []string{"wlj.com.cn", "sp.wlj.com.cn", "www.wlj.com.cn", "oa.wlj.com.cn"}
portsToScan := "80,443"
options := runner.Options{
Host: targets,
ScanType: "s",
Verbose: true,
Debug: true,
OnResult: func(hr *result.HostResult) {
for _, port := range hr.Ports {
foundPort := strconv.Itoa(port.Port)
HostPort := fmt.Sprintf("%s:%s", hr.Host, foundPort)
HostPortList = append(HostPortList, HostPort)
}
},
Ports: portsToScan,
Silent: true,
}
naabuRunner, err := runner.NewRunner(&options)
if err != nil {
log.Fatal(err)
}
defer naabuRunner.Close()
naabuRunner.RunEnumeration(context.TODO())
fmt.Println("Found ports:", HostPortList)
}
3. 控制并发数量
通过设置适当的并发参数来限制资源使用:
options := runner.Options{
// 其他配置...
Rate: 1000, // 限制每秒请求数
Threads: 50, // 限制并发线程数
}
最佳实践建议
-
资源管理:在使用网络扫描库时,应当注意及时释放资源,避免资源泄漏。
-
错误处理:增加对系统资源不足情况的错误处理逻辑,提供友好的错误提示。
-
平台适配:编写跨平台应用时,应当考虑不同操作系统在资源管理上的差异,进行适当的适配。
-
性能调优:根据目标网络环境和系统资源情况,合理调整扫描参数,平衡扫描速度和资源消耗。
总结
"no free handlers"错误反映了Linux系统下资源限制对Naabu运行的影响。通过理解系统资源管理机制、优化代码结构以及合理配置扫描参数,可以有效解决这一问题。对于网络扫描类工具的使用,开发者应当特别注意资源管理和平台差异问题,以确保工具在不同环境下都能稳定运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00