使用distributions3包进行单样本Z检验的完整指南
引言
在统计学中,Z检验是一种常用的假设检验方法,用于判断样本均值是否显著不同于已知总体均值。本文将详细介绍如何使用distributions3包在R中执行单样本Z检验,包括假设检验的各个步骤、计算p值、确定拒绝域以及进行功效和样本量计算。
数据准备与问题描述
假设一位学生想估计教授们知道并喜爱的表情包数量。经过一年观察,记录了以下10个班级的表情包使用数量:
x <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2)
根据其他类似研究,可以假设总体标准差σ=2。我们的目标是检验教授平均知道3个表情包的假设是否成立。
正态性检验
在进行Z检验前,需要验证数据是否满足正态性假设。对于小样本(n<30),我们可以使用Q-Q图:
qqnorm(x)
qqline(x)
如果数据点大致落在参考线附近,没有系统性偏离,则可以认为数据近似正态分布。从图中可以看出,本例数据满足正态性假设。
假设检验步骤
1. 建立假设
我们设定:
- 零假设H₀: μ = 3
- 备择假设H₁: μ ≠ 3
2. 计算检验统计量
Z统计量计算公式为: Z = (x̄ - μ₀) / (σ/√n)
在R中计算:
n <- length(x)
z_stat <- (mean(x) - 3) / (2 / sqrt(n))
3. 计算p值
使用distributions3包计算双尾p值:
library(distributions3)
Z <- Normal(0, 1) # 标准正态分布
p_value <- 2 * cdf(Z, -abs(z_stat))
理解p值计算
p值表示在零假设成立的情况下,观察到当前或更极端结果的概率。对于双尾检验,我们考虑两个方向的极端情况:
-
直接计算: p = P(Z ≥ |z|) + P(Z ≤ -|z|) = 2 * P(Z ≤ -|z|)
-
使用对称性: p = 2 * Φ(-|z|)
在distributions3包中,我们使用第二种方法,因为它计算更高效且避免了重复计算。
单尾检验
有时我们只关心单一方向的差异:
-
右尾检验(H₁: μ > μ₀): p = P(Z > z) = 1 - Φ(z)
-
左尾检验(H₁: μ < μ₀): p = P(Z < z) = Φ(z)
拒绝域的三种表示方式
- p值表示:当p < α时拒绝H₀
- 检验统计量表示:当|z| > z_{1-α/2}时拒绝H₀
- 样本均值表示:当x̄超出μ₀ ± z_{1-α/2}*(σ/√n)时拒绝H₀
这三种表示本质上是等价的,只是表达形式不同。
功效分析
功效(1-β)是指当H₀为假时正确拒绝H₀的概率。计算功效需要考虑真实的μ值(μ_A)。
功效计算公式
对于双尾检验,功效为: P(Z < (μ₀-μ_A)/(σ/√n) + z_{α/2}) + P(Z > (μ₀-μ_A)/(σ/√n) + z_{1-α/2})
例如,当真实μ=5时:
effect <- (3 - 5) / (2 / sqrt(10))
power_lower <- effect + quantile(Z, 0.025)
power_upper <- effect + quantile(Z, 0.975)
power <- cdf(Z, power_lower) + (1 - cdf(Z, power_upper))
样本量计算
为了达到特定功效(1-β),所需样本量n可通过以下公式计算:
n ≈ [σ*(z_{α/2} + z_β)/(μ₀ - μ_A)]²
例如,要检测μ从2变为3的差异,功效90%:
n <- (2 * (quantile(Z, 0.025) + quantile(Z, 0.1)) / (2 - 3))^2
实际应用建议
- 优先报告精确p值,而非简单的"显著/不显著"
- 考虑效应大小而不仅仅是统计显著性
- 在实验前进行功效分析,确保样本量足够
- 检查正态性假设,特别是小样本时
- 使用distributions3包可以简化分布相关计算
总结
本文通过一个实际案例,详细介绍了使用distributions3包进行单样本Z检验的全过程。从数据准备、假设检验到功效分析,distributions3包提供了简洁而强大的工具,使统计计算更加直观和高效。理解这些基础统计方法对于正确进行数据分析和结果解释至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00