emcie-co/parlant项目中ProblematicToolData的choices参数增强方案
2025-07-05 03:19:58作者:裴麒琰
背景介绍
在emcie-co/parlant项目中,ProblematicToolData是一个用于处理工具数据的核心组件。在日常使用中,开发人员经常遇到一个痛点:当某个参数基于枚举类型(enum)或选择提供器(choice_provider)时,API使用者往往不清楚该参数允许输入哪些有效值。
当前问题分析
目前系统存在两个主要缺陷:
-
参数值发现机制缺失:API无法方便地返回允许的参数值列表,导致开发者无法直观了解可用选项。这给API使用者带来了额外的学习成本,他们需要查阅文档或源代码才能确定有效输入值。
-
错误反馈不充分:当调用方提供了无效值时,系统仅返回"invalid value"这样的通用错误信息,而没有告知可接受的值范围。这种反馈机制不够友好,迫使客户端开发者需要通过试错方式来猜测有效值。
技术解决方案
核心改进点
通过在ProblematicToolData中添加choices参数,可以系统性地解决上述问题。这个参数将包含以下关键信息:
- 允许值列表:明确列出该参数所有可接受的有效值
- 值类型信息:提供每个值的类型定义
- 描述信息:可选地包含每个值的简短说明
实现细节
数据结构设计
class ProblematicToolData:
def __init__(self, ...):
# 现有参数
self.choices = None # 新增choices参数
def set_choices(self, choices):
"""设置允许的选择值"""
self.choices = choices
def validate(self, input_value):
"""验证输入值"""
if self.choices and input_value not in self.choices:
raise ValueError(
f"无效值'{input_value}'。允许的值为: {', '.join(self.choices)}"
)
枚举类型集成
对于基于枚举的参数,可以自动从枚举类中提取choices:
from enum import Enum
class Color(Enum):
RED = 'red'
GREEN = 'green'
BLUE = 'blue'
tool_data.set_choices([e.value for e in Color])
动态选择提供器支持
对于动态生成的选择项,可以通过choice_provider自动填充choices:
def get_available_languages():
return ['en', 'zh', 'es', 'fr']
tool_data.set_choices(get_available_languages())
预期收益
- 开发者体验提升:API使用者可以轻松获取参数允许值,减少文档查阅时间
- 调试效率提高:清晰的错误信息可以快速定位问题,减少无效尝试
- 系统可维护性增强:统一的值验证机制使代码更加健壮和一致
- 自动文档生成:choices信息可以方便地集成到API文档中
实际应用示例
假设有一个设置主题颜色的API参数:
# 旧版错误反馈
"error": "Invalid value 'yellow' for parameter 'theme_color'"
# 新版改进反馈
"error": "Invalid value 'yellow' for parameter 'theme_color'. Allowed values are: red, green, blue, dark, light"
总结
在emcie-co/parlant项目中为ProblematicToolData添加choices参数是一个简单但效果显著的改进。它不仅解决了当前API使用中的痛点,还为未来的功能扩展奠定了基础。这种改进体现了良好的API设计原则:透明、自描述和用户友好。通过提供明确的参数值范围和详细的错误反馈,可以显著提升开发者体验和系统可用性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705