EasyJSON 教程:高性能JSON处理库
2024-08-10 19:32:34作者:宣海椒Queenly
1. 项目介绍
EasyJSON 是一个专门为 Go 语言设计的高性能 JSON 库,它提供了高效的序列化和反序列化功能。相比标准库 encoding/json,EasyJSON 使用非反射的方式实现,因此在处理速度上有显著优势,可达到 4-5 倍的速度提升。此外,EasyJSON 的目标是保持生成的 Go 代码简洁,方便用户优化和定制,如自定义字段名称格式、默认开启omitempty等。
2. 项目快速启动
安装
确保你的 Go 环境已设置好并更新到最新版本。然后通过以下命令安装 EasyJSON:
go get -u gitlab.com/mailru/easyjson/
或者对于 Go 1.17 及以上版本:
go get gitlab.com/mailru/easyjson && go install gitlab.com/mailru/easyjson@latest
使用示例
假设你有一个名为 model.go 的文件,其中定义了一个结构体:
// model.go
package main
type User struct {
Name string `json:"name"`
Email string `json:"email"`
Age int `json:"age"`
}
func main() {}
要生成序列化和反序列化的函数,运行以下命令:
easyjson -all model.go
这将在同一目录下生成一个名为 model_easyjson.go 的文件,包含了所需的序列化和反序列化代码。
go build
现在你可以使用生成的代码来处理 JSON 数据:
package main
import (
"bytes"
"fmt"
"gitlab.com/mailru/easyjson/jwriter"
)
// ...(User 结构体定义不变)
func main() {
user := User{"Alice", "alice@example.com", 30}
var buf bytes.Buffer
w := jwriter.Writer{Buffer: &buf}
user.EncodeEasyJSON(&w)
w.Flush()
fmt.Println("Serialized JSON:", buf.String())
jsonStr := "{\"name\":\"Alice\",\"email\":\"alice@example.com\",\"age\":30}"
var deserialized User
deserialized.DecodeEasyJSON(json.NewDecoder(bytes.NewReader([]byte(jsonStr))))
fmt.Println("Deserialized User:", deserialized)
}
3. 应用案例和最佳实践
- 当需要对大量数据进行JSON处理时,例如在高并发API服务器中,EasyJSON可以显著提高性能。
- 在序列化时,尽量使用
EncodeEasyJSON将对象写入io.Writer,而不是先生成字节切片或字符串,以减少内存分配和拷贝。 - 为避免临时文件,可以使用
-leave_temps参数保留生成的.easyjson文件。 - 对于特定的性能需求,可以手工优化 EasyJSON 生成的代码。
4. 典型生态项目
EasyJSON 在很多高性能服务和工具中被广泛采用,包括但不限于:
- Fasthttp:一个快速的 HTTP 客户端/服务器库。
- Gin:流行的 Web 框架,虽然它主要使用标准库
encoding/json,但可以配合 EasyJSON 提升性能。 - Go-cache:简单的缓存库,支持 EasyJSON 序列化。
通过这些项目,你可以看到如何将 EasyJSON 与其他组件结合使用,以构建更高效的系统。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C096
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19