RecBole中LightGCN模型在ml-100k数据集上的性能优化分析
在推荐系统领域,LightGCN作为一种高效的图卷积网络模型,因其简洁的架构和出色的性能而广受关注。然而,在使用RecBole框架实现LightGCN模型时,部分开发者反映在ml-100k数据集上出现了性能不佳的情况。本文将深入分析可能的原因,并提供针对性的优化建议。
数据集划分问题
在模型训练过程中,合理的训练集、验证集和测试集划分至关重要。通过分析用户反馈,我们发现一个常见问题是训练样本数量远小于验证集和测试集。这通常是由于配置文件中split_ratio
参数设置不当或group_by
参数使用不正确导致的。
建议开发者检查以下配置项:
split_ratio
应设置为合理的比例,如[0.8,0.1,0.1]group_by
参数如果设置为用户ID,可能导致训练样本过少- 确保
user_inter_num_interval
和item_inter_num_interval
设置合理,不会过滤过多样本
训练参数优化
LightGCN模型的性能对训练参数非常敏感。根据实践经验,我们建议关注以下关键参数:
-
提前停止策略:
stopping_step
默认值10可能过小,导致模型过早停止训练。建议增大至50或更高,或完全关闭提前停止功能进行测试。 -
学习率设置:0.001的学习率对LightGCN可能偏大,可尝试降低到0.0005或使用学习率衰减策略。
-
负采样数量:
training_neg_sample_num
设置为1可能不足,建议增加到3-5个。 -
正则化权重:
reg_weight
默认1e-05可能偏小,可尝试增大到1e-04。
模型架构调整
LightGCN的核心参数也需要仔细调优:
-
嵌入维度:
embedding_size
设置为64是合理的起点,但可根据数据集大小调整。对于ml-100k这样的较小数据集,32维可能已经足够。 -
网络层数:
n_layers
设置为2是常见选择,但可以尝试增加到3层观察效果。 -
批量大小:
train_batch_size
和eval_batch_size
设置为4096对ml-100k可能过大,建议减小到1024或2048。
评估指标解读
当观察到Precision@10为0.1716时,需要结合其他指标综合判断:
- 对比Recall和NDCG:如果这些指标也偏低,说明模型整体性能不佳
- 检查覆盖率指标:ItemCoverage可以反映模型推荐的多样性
- 考虑数据特性:ml-100k是较老的数据集,预期指标可能低于现代数据集
实践建议
- 首先确保数据加载和划分正确,验证各集合样本量是否符合预期
- 从较小的学习率开始训练,观察损失曲线是否正常下降
- 逐步调整模型复杂度,先确保浅层网络能正常工作
- 使用验证集进行超参数搜索,找到最佳组合
- 最终在测试集上评估,避免过早使用测试集导致过拟合
通过系统性地调整这些参数和策略,大多数情况下可以显著提升LightGCN在ml-100k数据集上的性能表现。记住,推荐系统的调优是一个迭代过程,需要耐心和细致的实验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









