Super-Gradients 训练中的 EarlyStop 回调函数使用指南
在使用 Super-Gradients 框架进行模型训练时,EarlyStop 是一个非常有用的回调函数,它可以帮助我们在验证指标不再改善时提前终止训练,从而节省计算资源和时间。本文将详细介绍如何正确配置和使用 EarlyStop 回调函数。
问题背景
在 Super-Gradients 框架中,许多开发者会遇到一个常见错误:当尝试使用 EarlyStop 回调函数时,系统会抛出 AttributeError: 'EarlyStop' object has no attribute 'append' 的错误。这通常是由于回调函数配置不当导致的。
正确配置方法
1. 导入必要的模块
首先需要导入 EarlyStop 类和 Phase 枚举:
from super_gradients.training.utils.early_stopping import EarlyStop
from super_gradients.training.utils.callbacks import Phase
2. 创建 EarlyStop 实例
创建一个 EarlyStop 回调实例,配置相关参数:
early_stop_loss = EarlyStop(
phase=Phase.VALIDATION_EPOCH_END, # 在验证阶段结束时检查
monitor="valid_loss", # 监控验证损失
mode="min", # 希望损失值越小越好
min_delta=0.5, # 最小改善阈值
patience=3, # 容忍不改善的epoch数
verbose=True, # 打印日志信息
strict=True, # 严格模式
)
3. 将回调函数添加到训练参数
关键点:phase_callbacks 参数期望接收一个回调函数的列表,而不是单个回调对象。这是导致上述错误的根本原因。
正确做法是将 EarlyStop 实例放入列表中:
train_params = {
# 其他训练参数...
"phase_callbacks": [early_stop_loss], # 注意这里是列表形式
# 其他训练参数...
}
参数详解
-
phase:指定回调函数触发的时机,通常设置为
VALIDATION_EPOCH_END,表示在每个验证周期结束时检查。 -
monitor:指定要监控的指标名称,如验证损失("valid_loss")或准确率等。
-
mode:指定监控指标的最优方向:
- "min":指标越小越好(如损失值)
- "max":指标越大越好(如准确率)
-
min_delta:定义"改善"的最小变化量,只有超过这个阈值的变化才被认为是真正的改善。
-
patience:在触发停止前允许指标不改善的epoch数。
-
verbose:是否打印详细日志信息。
-
strict:是否严格检查监控指标是否存在。
使用建议
-
对于不同的任务,可能需要调整
min_delta和patience参数:- 对于波动较大的训练过程,可以增大
min_delta或patience - 对于稳定的训练过程,可以使用较小的值以便更早停止
- 对于波动较大的训练过程,可以增大
-
可以同时监控多个指标,创建多个 EarlyStop 实例并都添加到
phase_callbacks列表中。 -
EarlyStop 可以与其他回调函数(如模型检查点、学习率调度器等)一起使用,只需将它们都添加到同一个列表中。
通过正确配置 EarlyStop 回调函数,可以有效防止模型过拟合,并在适当的时候终止训练,从而优化训练效率和资源使用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00