Super-Gradients 训练中的 EarlyStop 回调函数使用指南
在使用 Super-Gradients 框架进行模型训练时,EarlyStop 是一个非常有用的回调函数,它可以帮助我们在验证指标不再改善时提前终止训练,从而节省计算资源和时间。本文将详细介绍如何正确配置和使用 EarlyStop 回调函数。
问题背景
在 Super-Gradients 框架中,许多开发者会遇到一个常见错误:当尝试使用 EarlyStop 回调函数时,系统会抛出 AttributeError: 'EarlyStop' object has no attribute 'append' 的错误。这通常是由于回调函数配置不当导致的。
正确配置方法
1. 导入必要的模块
首先需要导入 EarlyStop 类和 Phase 枚举:
from super_gradients.training.utils.early_stopping import EarlyStop
from super_gradients.training.utils.callbacks import Phase
2. 创建 EarlyStop 实例
创建一个 EarlyStop 回调实例,配置相关参数:
early_stop_loss = EarlyStop(
phase=Phase.VALIDATION_EPOCH_END, # 在验证阶段结束时检查
monitor="valid_loss", # 监控验证损失
mode="min", # 希望损失值越小越好
min_delta=0.5, # 最小改善阈值
patience=3, # 容忍不改善的epoch数
verbose=True, # 打印日志信息
strict=True, # 严格模式
)
3. 将回调函数添加到训练参数
关键点:phase_callbacks 参数期望接收一个回调函数的列表,而不是单个回调对象。这是导致上述错误的根本原因。
正确做法是将 EarlyStop 实例放入列表中:
train_params = {
# 其他训练参数...
"phase_callbacks": [early_stop_loss], # 注意这里是列表形式
# 其他训练参数...
}
参数详解
-
phase:指定回调函数触发的时机,通常设置为
VALIDATION_EPOCH_END,表示在每个验证周期结束时检查。 -
monitor:指定要监控的指标名称,如验证损失("valid_loss")或准确率等。
-
mode:指定监控指标的最优方向:
- "min":指标越小越好(如损失值)
- "max":指标越大越好(如准确率)
-
min_delta:定义"改善"的最小变化量,只有超过这个阈值的变化才被认为是真正的改善。
-
patience:在触发停止前允许指标不改善的epoch数。
-
verbose:是否打印详细日志信息。
-
strict:是否严格检查监控指标是否存在。
使用建议
-
对于不同的任务,可能需要调整
min_delta和patience参数:- 对于波动较大的训练过程,可以增大
min_delta或patience - 对于稳定的训练过程,可以使用较小的值以便更早停止
- 对于波动较大的训练过程,可以增大
-
可以同时监控多个指标,创建多个 EarlyStop 实例并都添加到
phase_callbacks列表中。 -
EarlyStop 可以与其他回调函数(如模型检查点、学习率调度器等)一起使用,只需将它们都添加到同一个列表中。
通过正确配置 EarlyStop 回调函数,可以有效防止模型过拟合,并在适当的时候终止训练,从而优化训练效率和资源使用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00