Apache Sling 验证框架API使用手册
欢迎来到Apache Sling验证框架API的详细指南。本手册旨在帮助开发者快速理解并应用这一框架到他们的Sling项目中,确保资源和请求参数的有效性。以下是关键部分的介绍:
1. 项目目录结构及介绍
Apache Sling验证框架的仓库遵循典型的Java Maven项目结构。下面是核心组件的关键目录概述:
├── src # 源代码根目录
│ ├── main # 主要源码和资源配置
│ ├── java # Java源代码
│ └── org/apache/sling/validation # 核心API和实现类
│ ├── resources # 静态资源或配置文件,可能包括国际化的消息文件
│ └── test # 测试源代码和测试数据
├── asf.yaml # ASF相关的配置文件
├── bnd # BND相关配置,用于OSGi包元数据
├── pom.xml # Maven项目的主配置文件
├── CONTRIBUTING.md # 贡献者指南
├── CODE_OF_CONDUCT.md # 行为准则
├── LICENSE # 许可证文件
├── README.md # 项目简介和快速入门
重要目录说明:
src/main/java
: 包含了验证框架的核心接口(ValidationModel
,ValidationResult
,ValidationService
)及其实现。pom.xml
: Maven构建文件,定义了依赖关系、构建生命周期等。
2. 项目的启动文件介绍
在传统的Maven项目中,并没有特定的“启动文件”如在某些应用程序中常见的main方法,因为这个库是作为OSGi服务设计的,集成在Apache Sling环境中。然而,若要运行使用此框架的示例或应用,你需要一个运行Apache Sling的实例,这通常通过启动Sling的嵌入式服务器来完成。这涉及到以下步骤,但不是直接在验证框架API仓库内进行操作:
- 使用Maven或命令行启动Sling实例,其过程涉及配置POM以包含Sling及其验证框架的相关依赖。
- 在Sling配置中,确保
org.apache.sling.validation.api
和org.apache.sling.validation.core
这两个 bundles 已部署,并且有正确的服务映射与权限设置。
实际的应用程序启动通常发生在应用容器(如Apache Felix, Equinox或其他支持OSGi的容器)内部,启动时自动加载并管理这些服务和bundle。
3. 项目的配置文件介绍
配置验证模型资源
虽然具体的配置文件路径不直接存在于sling-org-apache-sling-validation-api
库中,但验证规则通过Sling的资源模型来定义。这些规则位于Sling的资源树下,通常在 /apps
或 /libs
目录下的特定位置,资源类型应设为sling/validation/model
。例如:
/apps/myapp/validation/model/my-resource-type
每个模型资源可以定义验证规则,比如通过sling:validationRules
属性指定。
OSGi服务配置
此外,对于服务的配置,通常是通过OSGi的服务注册和配置管理实现的。这意味着通过配置文件(如.cfg
文件)或者直接通过OSGi管理界面来设定服务参数,但这部分内容更多地是在使用框架的项目层次上发生的,而非本库本身提供的直接受控配置文件。
请注意,实际集成和配置细节需参照具体项目需求以及Apache Sling的官方文档来进行。此框架强调的是如何在Sling上下文中定义和应用验证逻辑,而具体的启动和配置流程则基于Sling的环境搭建。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









