在SysReptor中实现带资产列表的Markdown格式建议清单
2025-07-07 13:07:56作者:裴锟轩Denise
背景介绍
SysReptor是一款优秀的报告生成工具,它允许安全研究人员和渗透测试人员将发现的安全问题整理成专业报告。在实际工作中,我们经常需要为客户提供简洁明了的修复建议清单,同时还需要关联受影响的资产信息。
基础实现方案
SysReptor提供了灵活的模板系统,可以通过Vue.js语法动态生成报告内容。最基本的建议清单实现方式如下:
<ul>
<li v-for="finding in findings" v-html="parseMarkdown(finding.short_recommendation)"></li>
</ul>
这种方法虽然简单,但存在一个明显问题:Markdown格式的内容无法被正确解析,链接等Markdown语法会以原始文本形式显示。
改进方案:使用Markdown组件
SysReptor内置了专门的Markdown组件,可以正确处理Markdown格式的内容。改进后的实现方式如下:
<ul>
<template v-for="finding in findings">
<li v-if="finding.short_recommendation">
<markdown :text="finding.short_recommendation" class="markdown-inline" />
</li>
</template>
</ul>
这种方法解决了Markdown解析问题,同时使用了条件渲染(v-if)确保只有包含建议的条目才会显示。
进阶实现:关联受影响资产
在实际报告中,除了修复建议外,客户通常还需要知道哪些具体资产需要处理。我们可以进一步扩展模板,将受影响资产以子列表形式展示:
<template v-for="finding in findings">
<li v-if="finding.short_recommendation">
<markdown :text="finding.short_recommendation" class="markdown-inline" />
<ul v-for="component in finding.affected_components">
<li>
<markdown :text="component" class="markdown-inline" />
</li>
</ul>
</li>
</template>
这种结构会生成如下格式的输出:
- 修复建议1
- 受影响资产1
- 受影响资产2
- 修复建议2
- 受影响资产3
最佳实践建议
-
内容格式化:确保
short_recommendation字段使用标准的Markdown语法,特别是当包含链接时。 -
资产命名规范:保持
affected_components中的资产名称简洁明了,避免过长描述。 -
样式调整:可以通过CSS进一步美化列表样式,使其更符合报告整体风格。
-
空值处理:模板中已包含
v-if条件判断,确保没有建议或资产时不会显示空条目。
总结
SysReptor的模板系统提供了强大的灵活性,通过合理使用Vue.js指令和内置组件,可以生成既美观又实用的报告内容。本文介绍的技术方案特别适合需要为客户提供清晰修复指导的安全评估报告,既展示了问题概要,又明确了具体需要处理的资产,大大提升了报告的可操作性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251