在SysReptor中实现带资产列表的Markdown格式建议清单
2025-07-07 13:07:56作者:裴锟轩Denise
背景介绍
SysReptor是一款优秀的报告生成工具,它允许安全研究人员和渗透测试人员将发现的安全问题整理成专业报告。在实际工作中,我们经常需要为客户提供简洁明了的修复建议清单,同时还需要关联受影响的资产信息。
基础实现方案
SysReptor提供了灵活的模板系统,可以通过Vue.js语法动态生成报告内容。最基本的建议清单实现方式如下:
<ul>
<li v-for="finding in findings" v-html="parseMarkdown(finding.short_recommendation)"></li>
</ul>
这种方法虽然简单,但存在一个明显问题:Markdown格式的内容无法被正确解析,链接等Markdown语法会以原始文本形式显示。
改进方案:使用Markdown组件
SysReptor内置了专门的Markdown组件,可以正确处理Markdown格式的内容。改进后的实现方式如下:
<ul>
<template v-for="finding in findings">
<li v-if="finding.short_recommendation">
<markdown :text="finding.short_recommendation" class="markdown-inline" />
</li>
</template>
</ul>
这种方法解决了Markdown解析问题,同时使用了条件渲染(v-if)确保只有包含建议的条目才会显示。
进阶实现:关联受影响资产
在实际报告中,除了修复建议外,客户通常还需要知道哪些具体资产需要处理。我们可以进一步扩展模板,将受影响资产以子列表形式展示:
<template v-for="finding in findings">
<li v-if="finding.short_recommendation">
<markdown :text="finding.short_recommendation" class="markdown-inline" />
<ul v-for="component in finding.affected_components">
<li>
<markdown :text="component" class="markdown-inline" />
</li>
</ul>
</li>
</template>
这种结构会生成如下格式的输出:
- 修复建议1
- 受影响资产1
- 受影响资产2
- 修复建议2
- 受影响资产3
最佳实践建议
-
内容格式化:确保
short_recommendation字段使用标准的Markdown语法,特别是当包含链接时。 -
资产命名规范:保持
affected_components中的资产名称简洁明了,避免过长描述。 -
样式调整:可以通过CSS进一步美化列表样式,使其更符合报告整体风格。
-
空值处理:模板中已包含
v-if条件判断,确保没有建议或资产时不会显示空条目。
总结
SysReptor的模板系统提供了强大的灵活性,通过合理使用Vue.js指令和内置组件,可以生成既美观又实用的报告内容。本文介绍的技术方案特别适合需要为客户提供清晰修复指导的安全评估报告,既展示了问题概要,又明确了具体需要处理的资产,大大提升了报告的可操作性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873