OpenAI-DotNet 库中获取嵌入生成时的令牌使用情况
概述
在使用 OpenAI 的嵌入功能时,开发者经常需要了解 API 调用消耗的令牌数量,这对于成本控制和用量监控非常重要。OpenAI-DotNet 库提供了两种不同的方法来生成嵌入,但只有其中一种方法会返回令牌使用信息。
两种嵌入生成方法的区别
OpenAI-DotNet 库提供了两种生成嵌入的方法:
-
GenerateEmbedding(单数形式):这是一个便捷方法,返回单个Embedding对象,但不包含令牌使用信息。 -
GenerateEmbeddings(复数形式):这个方法更接近 REST API 的原始设计,返回一个EmbeddingCollection对象,其中包含了Usage属性,可以获取详细的令牌使用情况。
为什么设计两种方法
这种设计源于 OpenAI REST API 的原始设计。在 REST API 中,使用信息(usage)是作为整个响应的一部分返回的,而不是针对每个单独的嵌入。GenerateEmbeddings 方法更忠实地反映了 API 的这一设计,而 GenerateEmbedding 方法则是为了简化常见场景而添加的便捷方法。
如何正确获取令牌使用信息
要获取嵌入生成时的令牌使用情况,开发者应该使用 GenerateEmbeddings 方法。以下是一个典型的使用示例:
EmbeddingClient client = new(embeddingModel, apiKey);
EmbeddingCollection embeddings = await client.GenerateEmbeddingsAsync(text);
// 获取使用信息
EmbeddingTokenUsage usage = embeddings.Usage;
int totalTokens = usage.TotalTokens;
int promptTokens = usage.PromptTokens;
技术实现细节
在底层实现上,GenerateEmbeddings 方法会返回完整的 API 响应,包括:
- 生成的嵌入向量列表
- 模型信息
- 使用统计(令牌数)
而 GenerateEmbedding 方法则只提取响应中的第一个嵌入向量返回给调用者,丢弃了其他元数据信息。
最佳实践建议
- 如果需要监控令牌使用情况,务必使用
GenerateEmbeddings方法 - 在只需要单个嵌入且不关心使用统计的简单场景中,可以使用
GenerateEmbedding方法简化代码 - 考虑在应用程序中统一使用
GenerateEmbeddings方法以保持一致性
总结
OpenAI-DotNet 库通过提供两种不同粒度的方法来满足不同场景的需求。理解这两种方法的区别对于正确获取嵌入生成时的令牌使用信息至关重要。开发者应根据具体需求选择合适的方法,在需要用量监控时使用 GenerateEmbeddings 方法来获取完整的使用统计信息。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00