OpenAI-DotNet 库中获取嵌入生成时的令牌使用情况
概述
在使用 OpenAI 的嵌入功能时,开发者经常需要了解 API 调用消耗的令牌数量,这对于成本控制和用量监控非常重要。OpenAI-DotNet 库提供了两种不同的方法来生成嵌入,但只有其中一种方法会返回令牌使用信息。
两种嵌入生成方法的区别
OpenAI-DotNet 库提供了两种生成嵌入的方法:
-
GenerateEmbedding
(单数形式):这是一个便捷方法,返回单个Embedding
对象,但不包含令牌使用信息。 -
GenerateEmbeddings
(复数形式):这个方法更接近 REST API 的原始设计,返回一个EmbeddingCollection
对象,其中包含了Usage
属性,可以获取详细的令牌使用情况。
为什么设计两种方法
这种设计源于 OpenAI REST API 的原始设计。在 REST API 中,使用信息(usage)是作为整个响应的一部分返回的,而不是针对每个单独的嵌入。GenerateEmbeddings
方法更忠实地反映了 API 的这一设计,而 GenerateEmbedding
方法则是为了简化常见场景而添加的便捷方法。
如何正确获取令牌使用信息
要获取嵌入生成时的令牌使用情况,开发者应该使用 GenerateEmbeddings
方法。以下是一个典型的使用示例:
EmbeddingClient client = new(embeddingModel, apiKey);
EmbeddingCollection embeddings = await client.GenerateEmbeddingsAsync(text);
// 获取使用信息
EmbeddingTokenUsage usage = embeddings.Usage;
int totalTokens = usage.TotalTokens;
int promptTokens = usage.PromptTokens;
技术实现细节
在底层实现上,GenerateEmbeddings
方法会返回完整的 API 响应,包括:
- 生成的嵌入向量列表
- 模型信息
- 使用统计(令牌数)
而 GenerateEmbedding
方法则只提取响应中的第一个嵌入向量返回给调用者,丢弃了其他元数据信息。
最佳实践建议
- 如果需要监控令牌使用情况,务必使用
GenerateEmbeddings
方法 - 在只需要单个嵌入且不关心使用统计的简单场景中,可以使用
GenerateEmbedding
方法简化代码 - 考虑在应用程序中统一使用
GenerateEmbeddings
方法以保持一致性
总结
OpenAI-DotNet 库通过提供两种不同粒度的方法来满足不同场景的需求。理解这两种方法的区别对于正确获取嵌入生成时的令牌使用信息至关重要。开发者应根据具体需求选择合适的方法,在需要用量监控时使用 GenerateEmbeddings
方法来获取完整的使用统计信息。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









