ESP32-WiFi-Hash-Monster 项目教程
2024-09-16 23:36:40作者:宗隆裙
1. 项目目录结构及介绍
ESP32-WiFi-Hash-Monster/
├── ESP32-WiFi-Hash-Monster/
│ ├── ESP32-WiFi-Hash-Monster.ino
│ ├── Buffer.h
│ ├── Faces.h
│ ├── FS.h
│ ├── SD.h
│ ├── ...
├── images/
│ ├── angry_64.png
│ ├── happy_64.png
│ ├── ...
├── LICENSE
├── README.md
├── platformio.ini
└── ...
目录结构介绍
- ESP32-WiFi-Hash-Monster/: 主项目目录,包含主要的源代码文件。
- ESP32-WiFi-Hash-Monster.ino: 项目的启动文件,包含主要的逻辑代码。
- Buffer.h: 缓冲区相关的头文件。
- Faces.h: 界面相关的头文件。
- FS.h: 文件系统相关的头文件。
- SD.h: SD卡相关的头文件。
- ...: 其他辅助文件和头文件。
- images/: 包含项目中使用的图像文件,如表情图标等。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的说明文档,包含项目的基本介绍和使用说明。
- platformio.ini: 项目的配置文件,用于PlatformIO IDE。
2. 项目的启动文件介绍
ESP32-WiFi-Hash-Monster.ino
ESP32-WiFi-Hash-Monster.ino 是项目的启动文件,包含了主要的逻辑代码。以下是该文件的主要功能模块:
- setup(): 初始化函数,负责初始化WiFi、SD卡、显示界面等。
- loop(): 主循环函数,负责处理循环任务。
- setupWiFiPromisc(): 设置WiFi的混杂模式,用于捕获无线网络数据包。
- wifi_promiscuous(): WiFi混杂模式下的回调函数,处理捕获的数据包。
- draw(): 更新显示界面的函数,负责绘制图形和显示数据。
主要功能
- WiFi数据包捕获: 通过WiFi的混杂模式捕获EAPOL和PMKID数据包,并存储在SD卡中。
- 显示界面: 使用TFT显示屏显示当前的WiFi信道、信号强度、数据包数量等信息。
- SD卡存储: 将捕获的数据包存储在SD卡中,便于后续分析。
3. 项目的配置文件介绍
platformio.ini
platformio.ini 是PlatformIO IDE的配置文件,用于配置项目的编译和上传选项。以下是该文件的主要配置项:
[env:m5stack-fire]
platform = espressif32
board = m5stack-fire
framework = arduino
lib_deps =
https://github.com/tobozo/ESP32-Chimera-Core
https://github.com/tobozo/M5Stack-SD-Updater
https://github.com/FastLED/FastLED
配置项介绍
- platform: 指定使用的平台,这里是
espressif32,即ESP32平台。 - board: 指定目标开发板,这里是
m5stack-fire。 - framework: 指定使用的框架,这里是
arduino。 - lib_deps: 指定项目依赖的库,包括
ESP32-Chimera-Core、M5Stack-SD-Updater和FastLED。
其他配置
- build_flags: 编译选项,用于指定编译时的额外参数。
- upload_port: 上传端口,指定上传固件时的串口。
- monitor_port: 监视端口,指定调试时的串口。
通过这些配置,开发者可以方便地编译和上传项目,并进行调试和监控。
以上是ESP32-WiFi-Hash-Monster项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1