AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是AWS官方提供的深度学习容器镜像集合,它预装了流行的深度学习框架、依赖库和工具,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可以直接在AWS EC2等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了基于PyTorch 2.5.1的推理专用容器镜像更新。这次更新主要针对PyTorch推理场景,提供了CPU和GPU两种版本,均基于Python 3.11和Ubuntu 22.04系统构建。
镜像版本详情
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2-v1.4- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CPU版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.4- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CUDA 12.4版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
- 包含CUDA 12.4相关库和工具
关键软件包版本
两个镜像都预装了深度学习开发常用的工具和库:
-
核心框架:
- PyTorch 2.5.1(CPU/GPU)
- torchvision 0.20.1
- torchaudio 2.5.1
- torch-model-archiver 0.12.0
- torchserve 0.12.0
-
数据处理与科学计算:
- NumPy 2.1.3
- pandas 2.2.3(仅GPU版本)
- SciPy 1.14.1
- OpenCV 4.10.0.84
-
开发工具:
- Cython 3.0.11
- ninja 1.11.1.1
- filelock 3.16.1
-
AWS工具:
- boto3 1.35.56
- botocore 1.35.56
- awscli 1.35.22
技术特点与优势
-
系统兼容性:基于Ubuntu 22.04 LTS系统构建,提供长期支持稳定性。
-
Python环境:使用Python 3.11,这是目前Python的最新稳定版本之一,性能有显著提升。
-
CUDA支持:GPU版本支持CUDA 12.4,充分利用NVIDIA最新GPU的计算能力。
-
预装工具:包含torchserve和torch-model-archiver,方便模型部署和服务化。
-
优化配置:针对AWS EC2环境进行了专门优化,确保在云环境中发挥最佳性能。
适用场景
这些镜像特别适合以下应用场景:
-
模型服务化:使用torchserve快速部署训练好的PyTorch模型为REST API服务。
-
批量推理:处理大规模数据集的推理任务。
-
开发测试:作为统一的开发环境,确保团队使用相同版本的软件栈。
-
CI/CD流水线:在自动化流程中作为标准化的推理环境。
使用建议
对于生产环境,建议:
- 根据计算需求选择CPU或GPU版本
- 使用固定版本标签(如2.5.1-cpu-py311-ubuntu22.04-ec2)而非浮动标签(如latest)以确保环境一致性
- 在EC2上使用时,选择与镜像优化匹配的实例类型(如GPU版本配合p3/p4/g4/g5系列实例)
AWS Deep Learning Containers的这些PyTorch推理镜像为开发者提供了开箱即用的深度学习环境,大幅降低了部署PyTorch模型的门槛,是云端AI应用开发的理想选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00