AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是AWS官方提供的深度学习容器镜像集合,它预装了流行的深度学习框架、依赖库和工具,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可以直接在AWS EC2等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了基于PyTorch 2.5.1的推理专用容器镜像更新。这次更新主要针对PyTorch推理场景,提供了CPU和GPU两种版本,均基于Python 3.11和Ubuntu 22.04系统构建。
镜像版本详情
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2-v1.4- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CPU版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.4- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CUDA 12.4版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
- 包含CUDA 12.4相关库和工具
关键软件包版本
两个镜像都预装了深度学习开发常用的工具和库:
-
核心框架:
- PyTorch 2.5.1(CPU/GPU)
- torchvision 0.20.1
- torchaudio 2.5.1
- torch-model-archiver 0.12.0
- torchserve 0.12.0
-
数据处理与科学计算:
- NumPy 2.1.3
- pandas 2.2.3(仅GPU版本)
- SciPy 1.14.1
- OpenCV 4.10.0.84
-
开发工具:
- Cython 3.0.11
- ninja 1.11.1.1
- filelock 3.16.1
-
AWS工具:
- boto3 1.35.56
- botocore 1.35.56
- awscli 1.35.22
技术特点与优势
-
系统兼容性:基于Ubuntu 22.04 LTS系统构建,提供长期支持稳定性。
-
Python环境:使用Python 3.11,这是目前Python的最新稳定版本之一,性能有显著提升。
-
CUDA支持:GPU版本支持CUDA 12.4,充分利用NVIDIA最新GPU的计算能力。
-
预装工具:包含torchserve和torch-model-archiver,方便模型部署和服务化。
-
优化配置:针对AWS EC2环境进行了专门优化,确保在云环境中发挥最佳性能。
适用场景
这些镜像特别适合以下应用场景:
-
模型服务化:使用torchserve快速部署训练好的PyTorch模型为REST API服务。
-
批量推理:处理大规模数据集的推理任务。
-
开发测试:作为统一的开发环境,确保团队使用相同版本的软件栈。
-
CI/CD流水线:在自动化流程中作为标准化的推理环境。
使用建议
对于生产环境,建议:
- 根据计算需求选择CPU或GPU版本
- 使用固定版本标签(如2.5.1-cpu-py311-ubuntu22.04-ec2)而非浮动标签(如latest)以确保环境一致性
- 在EC2上使用时,选择与镜像优化匹配的实例类型(如GPU版本配合p3/p4/g4/g5系列实例)
AWS Deep Learning Containers的这些PyTorch推理镜像为开发者提供了开箱即用的深度学习环境,大幅降低了部署PyTorch模型的门槛,是云端AI应用开发的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00