AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是AWS官方提供的深度学习容器镜像集合,它预装了流行的深度学习框架、依赖库和工具,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可以直接在AWS EC2等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了基于PyTorch 2.5.1的推理专用容器镜像更新。这次更新主要针对PyTorch推理场景,提供了CPU和GPU两种版本,均基于Python 3.11和Ubuntu 22.04系统构建。
镜像版本详情
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2-v1.4
- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CPU版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.4
- 基于Ubuntu 22.04系统
- 预装PyTorch 2.5.1 CUDA 12.4版本
- 包含torchvision 0.20.1和torchaudio 2.5.1
- 支持Python 3.11环境
- 包含CUDA 12.4相关库和工具
关键软件包版本
两个镜像都预装了深度学习开发常用的工具和库:
-
核心框架:
- PyTorch 2.5.1(CPU/GPU)
- torchvision 0.20.1
- torchaudio 2.5.1
- torch-model-archiver 0.12.0
- torchserve 0.12.0
-
数据处理与科学计算:
- NumPy 2.1.3
- pandas 2.2.3(仅GPU版本)
- SciPy 1.14.1
- OpenCV 4.10.0.84
-
开发工具:
- Cython 3.0.11
- ninja 1.11.1.1
- filelock 3.16.1
-
AWS工具:
- boto3 1.35.56
- botocore 1.35.56
- awscli 1.35.22
技术特点与优势
-
系统兼容性:基于Ubuntu 22.04 LTS系统构建,提供长期支持稳定性。
-
Python环境:使用Python 3.11,这是目前Python的最新稳定版本之一,性能有显著提升。
-
CUDA支持:GPU版本支持CUDA 12.4,充分利用NVIDIA最新GPU的计算能力。
-
预装工具:包含torchserve和torch-model-archiver,方便模型部署和服务化。
-
优化配置:针对AWS EC2环境进行了专门优化,确保在云环境中发挥最佳性能。
适用场景
这些镜像特别适合以下应用场景:
-
模型服务化:使用torchserve快速部署训练好的PyTorch模型为REST API服务。
-
批量推理:处理大规模数据集的推理任务。
-
开发测试:作为统一的开发环境,确保团队使用相同版本的软件栈。
-
CI/CD流水线:在自动化流程中作为标准化的推理环境。
使用建议
对于生产环境,建议:
- 根据计算需求选择CPU或GPU版本
- 使用固定版本标签(如2.5.1-cpu-py311-ubuntu22.04-ec2)而非浮动标签(如latest)以确保环境一致性
- 在EC2上使用时,选择与镜像优化匹配的实例类型(如GPU版本配合p3/p4/g4/g5系列实例)
AWS Deep Learning Containers的这些PyTorch推理镜像为开发者提供了开箱即用的深度学习环境,大幅降低了部署PyTorch模型的门槛,是云端AI应用开发的理想选择。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









