Catala语言测试系统规范与解析
2025-07-05 05:53:30作者:魏献源Searcher
Catala语言项目近期对其测试系统进行了重要更新,旨在为开发者提供更清晰、更强大的测试能力。本文将详细介绍Catala语言中两种测试系统的设计理念、使用方法和最佳实践。
测试系统架构
Catala语言现在支持两种互补的测试方法:
- CRAM测试系统:基于文本比对的高灵活性测试框架
- 断言测试系统:基于程序内建断言的功能性测试框架
这两种测试系统都可通过clerk test命令统一执行,测试结果会被自动汇总展示。
CRAM测试系统详解
CRAM测试系统是Catala语言中传统的测试方法,它通过比对实际输出与预期输出来验证程序行为。新版本中对相关命名进行了调整:
catala-test-inline更名为catala-test-cramcatala-test更名为catala-test-cram-external
CRAM测试使用三重反引号标记测试用例,这些用例会被clerk工具自动发现并执行。测试结果会被整合到clerk生成的测试报告中。
CRAM测试特别适合以下场景:
- 需要精确控制输入输出的测试用例
- 涉及多步骤交互的复杂测试场景
- 需要与外部系统集成的测试
断言测试系统详解
新版本取消了原有的启发式测试检测机制(即自动将无输入的scope视为测试),转而采用显式的#[test]属性标记。
测试标记与验证
开发者可以通过在scope上添加#[test]属性来声明测试用例:
#[test]
scope 我的测试用例 =
...
系统会对标记为测试的scope进行以下验证:
- 确保测试scope没有
input参数(允许使用context) - 执行scope中包含的所有断言
- 如果没有断言,测试默认通过
多后端测试支持
clerk test --backend=<...>命令支持在不同后端执行测试:
- 自动比较指定后端与解释器的执行结果
- 确保跨后端行为一致性
- 自动添加结果一致性断言
测试范围限制
需要注意的是:
- 依赖于外部OCaml未实现模块的测试无法在解释器中运行
- 这类测试不应使用
#[test]标记 - 建议使用CRAM测试系统处理这类特殊情况
最佳实践建议
- 简单功能验证:优先使用
#[test]标记的断言测试 - 复杂场景测试:使用CRAM测试系统处理多步骤验证
- 跨后端一致性:充分利用
--autotest选项确保行为一致性 - 测试组织:合理规划测试目录结构,区分单元测试和集成测试
Catala语言的测试系统更新为开发者提供了更清晰、更强大的测试能力,同时也保持了向后兼容性。通过合理运用两种测试方法,开发者可以构建全面、可靠的测试套件,确保代码质量。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134