Kotlin AI 示例项目:深入理解 Prompt Chaining 工作流
2025-06-09 18:42:21作者:何举烈Damon
什么是 Prompt Chaining?
Prompt Chaining(提示链)是一种将复杂任务分解为一系列简单步骤的技术。在 Kotlin AI 示例项目中,我们利用 LangChain4j 库和 Claude 模型,展示了如何通过分步处理来实现高质量的结果输出。
这种技术类似于工厂的流水线作业,每个工位(步骤)专注于完成特定的任务,然后将半成品传递给下一个工位。在 AI 领域,每个"工位"就是一个精心设计的提示(prompt),负责处理前一步骤的输出结果。
技术优势解析
- 模块化设计:将复杂任务拆解为多个独立步骤,每个步骤可以单独优化
- 错误隔离:某个步骤出现问题不会影响整个流程,便于调试和修正
- 性能优化:可以为不同步骤选择最适合的模型和参数
- 可解释性:每个中间结果都可查看,增强了整个流程的透明度
Kotlin 实现详解
环境配置
首先需要设置 Kotlin 环境并引入必要的依赖:
%useLatestDescriptors
%use coroutines
%use langchain4j(1.0.0-beta3, anthropic)
核心组件构建
项目实现了两个关键函数:
- llmCall 函数:封装了与 Claude 模型的交互逻辑
suspend fun llmCall(
prompt: String,
systemPrompt: String? = null,
model: AnthropicChatModelName = AnthropicChatModelName.CLAUDE_3_7_SONNET_20250219
): String {
// 实现细节...
}
- chain 函数:管理整个提示链的执行流程
suspend fun chain(input: String, prompts: List<String>): String {
var result = input
prompts.forEachIndexed { index, prompt ->
println("Step ${index + 1}")
result = llmCall("$prompt\nInput: $result")
println(result)
}
return result
}
实际应用案例
项目中演示了一个季度报告数据分析的完整流程,包含四个关键步骤:
- 数据提取:从文本中识别数值和对应指标
- 格式统一:将所有数值转换为百分比形式
- 排序处理:按数值大小降序排列
- 表格生成:将结果格式化为 Markdown 表格
每个步骤都有精心设计的提示模板,确保模型能够准确理解任务要求。
最佳实践建议
-
提示设计原则:
- 每个提示应专注于单一任务
- 提供清晰的示例格式
- 明确输入输出的规范
-
错误处理策略:
- 为每个步骤设置验证机制
- 考虑添加回退逻辑
- 记录中间结果便于调试
-
性能优化技巧:
- 根据步骤复杂度调整模型参数
- 考虑并行处理独立步骤
- 缓存常用中间结果
应用场景扩展
Prompt Chaining 技术可广泛应用于:
- 商业智能:自动分析财报、提取关键指标
- 内容生产:大纲生成→内容撰写→风格调整的流水线
- 数据清洗:多步骤的数据提取、转换和加载
- 多语言处理:内容生成→翻译→本地化调整
总结
Kotlin AI 示例项目中的 Prompt Chaining 实现展示了如何将复杂任务分解为可管理的步骤。这种模式特别适合需要结构化数据处理、多阶段内容生成或任何受益于分而治之方法的任务。通过 Kotlin 的协程支持和 LangChain4j 的强大功能,开发者可以构建出高效、可靠的 AI 应用工作流。
对于想要深入掌握 AI 应用开发的 Kotlin 开发者来说,理解并掌握 Prompt Chaining 技术将是提升开发能力的重要一步。这种模式不仅提高了结果的准确性,也使整个开发过程更加可控和可维护。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
323
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
159
179
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
642
252
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
246
87
暂无简介
Dart
610
137
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
472
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
365
3.05 K