探秘高效Transformer:Softmax-free Linear Transformers
2024-05-22 01:34:55作者:农烁颖Land
在深度学习领域中,Transformer模型已经成为自然语言处理和计算机视觉任务的首选架构,但其对计算资源的需求一直是个挑战。最近,一项名为Softmax-free Linear Transformers的研究项目打破了这一局面,通过去除softmax操作并实现线性复杂度,为高效Transformer带来了新的可能。
项目介绍
Softmax-free Linear Transformers是来自复旦大学的研究团队在NeurIPS 2021会议上提出的创新工作,该研究进一步在IJCV 2024上进行了扩展。这个项目旨在减少传统Transformer自注意力机制中的计算负担,实现了与输入规模无关的线性时间复杂度,并在多个视觉任务上展现出出色的性能。
项目技术分析
传统的Transformer依赖于softmax函数来计算注意力权重,这导致了平方级别的计算复杂度。而SOFT则提出了一个规范化、softmax-free的自我注意力机制,它不仅减少了计算需求,而且在泛化能力上表现更优。此外,项目还包括了一个针对下游任务(如对象检测和语义分割)的优化版本——SOFT-Norm,以适应不同应用的效率要求。
应用场景
得益于其高效的特性,SOFT可以在资源受限的环境中用于:
- 图像分类:在ImageNet-1K数据集上的实验表明,即使在小模型(如SOFT-Tiny)上,也能达到79.3%的Top-1准确率。
- 对象检测:在COCO数据集上,SOFT结合RetinaNet和Mask R-CNN,展示了令人印象深刻的检测和分割性能。
- 语义分割:在ADE20K数据集上,SOFT与其他先进方法相配合,如UperNet,取得了不俗的mIoU得分。
项目特点
- 效率提升:通过消除softmax操作,SOFT实现了线性的计算复杂度,显著降低了内存和计算需求。
- 更强的泛化力:新提出的自我注意力机制增强了模型的泛化性能。
- 广泛应用:除了图像分类,SOFT还适用于对象检测和语义分割等复杂视觉任务。
- 易于使用:该项目提供了详细的安装指南和配置文件,用户可以轻松地在自己的项目中集成SOFT。
如果你正在寻找一种能够提高你的Transformer模型效率的方法,或者对探索新的神经网络结构感兴趣,那么Softmax-free Linear Transformers无疑是值得尝试的优秀项目。立即加入,体验线性复杂度的魅力吧!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5