探秘高效Transformer:Softmax-free Linear Transformers
2024-05-22 01:34:55作者:农烁颖Land
在深度学习领域中,Transformer模型已经成为自然语言处理和计算机视觉任务的首选架构,但其对计算资源的需求一直是个挑战。最近,一项名为Softmax-free Linear Transformers的研究项目打破了这一局面,通过去除softmax操作并实现线性复杂度,为高效Transformer带来了新的可能。
项目介绍
Softmax-free Linear Transformers是来自复旦大学的研究团队在NeurIPS 2021会议上提出的创新工作,该研究进一步在IJCV 2024上进行了扩展。这个项目旨在减少传统Transformer自注意力机制中的计算负担,实现了与输入规模无关的线性时间复杂度,并在多个视觉任务上展现出出色的性能。
项目技术分析
传统的Transformer依赖于softmax函数来计算注意力权重,这导致了平方级别的计算复杂度。而SOFT则提出了一个规范化、softmax-free的自我注意力机制,它不仅减少了计算需求,而且在泛化能力上表现更优。此外,项目还包括了一个针对下游任务(如对象检测和语义分割)的优化版本——SOFT-Norm,以适应不同应用的效率要求。
应用场景
得益于其高效的特性,SOFT可以在资源受限的环境中用于:
- 图像分类:在ImageNet-1K数据集上的实验表明,即使在小模型(如SOFT-Tiny)上,也能达到79.3%的Top-1准确率。
- 对象检测:在COCO数据集上,SOFT结合RetinaNet和Mask R-CNN,展示了令人印象深刻的检测和分割性能。
- 语义分割:在ADE20K数据集上,SOFT与其他先进方法相配合,如UperNet,取得了不俗的mIoU得分。
项目特点
- 效率提升:通过消除softmax操作,SOFT实现了线性的计算复杂度,显著降低了内存和计算需求。
- 更强的泛化力:新提出的自我注意力机制增强了模型的泛化性能。
- 广泛应用:除了图像分类,SOFT还适用于对象检测和语义分割等复杂视觉任务。
- 易于使用:该项目提供了详细的安装指南和配置文件,用户可以轻松地在自己的项目中集成SOFT。
如果你正在寻找一种能够提高你的Transformer模型效率的方法,或者对探索新的神经网络结构感兴趣,那么Softmax-free Linear Transformers无疑是值得尝试的优秀项目。立即加入,体验线性复杂度的魅力吧!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Python案例资源下载 - 从入门到精通的完整项目代码合集 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.46 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
547
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
596
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
410
Ascend Extension for PyTorch
Python
87
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
123