SpiceAI 项目增强:支持 Databricks 的 M2M 认证机制
在数据工程和机器学习领域,Databricks 平台因其强大的数据处理能力而广受欢迎。SpiceAI 项目近期对其 Databricks 连接器进行了重要升级,增加了对机器到机器(M2M)OAuth 认证的支持,这一改进将为开发者带来更安全、更便捷的集成体验。
背景与挑战
传统上,SpiceAI 与 Databricks 的集成主要依赖个人访问令牌(PAT)。然而,Databricks 即将弃用 PAT 机制,转向短期有效的令牌体系。这一变化使得现有的连接方式面临失效风险,亟需一种更现代化、更安全的认证方案。
解决方案概述
SpiceAI 团队选择实现 OAuth 2.0 的 M2M 认证流程作为标准连接方式。该方案基于服务主体(Service Principal)凭证,包括客户端ID和客户端密钥,运行时环境会自动处理令牌刷新等复杂流程。
技术实现细节
认证流程
- 凭证配置:开发者需要在 Spicepod 配置文件中指定 Databricks 终端节点、集群ID以及服务主体凭证
- 令牌获取:运行时使用服务主体凭证向 Databricks 认证服务器请求访问令牌
- 令牌刷新:系统会监测令牌有效期,在到期前5分钟自动刷新
- 会话维护:新令牌会被传递给 Spark 连接器实例以维持会话
关键组件
新增的 DatabricksTokenProvider 实现了 TokenProvider trait,专门负责令牌的生命周期管理。该组件采用 secrecy::SecretString 处理敏感信息,确保安全性。
配置示例
开发者可以通过以下 YAML 配置启用 M2M 认证:
datasets:
- from: databricks:spiceai_sandbox.default.messages
name: messages
params:
databricks_endpoint: ${secrets:DATABRICKS_ENDPOINT}
databricks_cluster_id: ${secrets:DATABRICKS_CLUSTER_ID}
databricks_client_id: ${secrets:DATABRICKS_CLIENT_ID}
databricks_client_secret: ${secrets:DATABRICKS_CLIENT_SECRET}
安全考量
该实现遵循"默认安全"原则:
- 所有凭证都存储在加密的秘密存储中
- 令牌使用专门的保密字符串类型处理
- 自动化的令牌刷新机制避免了人工干预带来的风险
兼容性与适用范围
此次升级全面覆盖了 SpiceAI 的 Databricks 数据连接器和目录连接器,支持 Delta Lake 和 Spark 连接两种模式。同时,Databricks 模型提供程序也获得了相同的认证能力。
开发者体验优化
除了核心的认证功能外,该实现还支持传递 User-Agent 字符串,方便运维团队追踪请求来源。开发者可以通过可选参数 databricks_user_agent 自定义该值。
总结
SpiceAI 对 Databricks 连接器的这次升级,不仅解决了即将到来的 PAT 弃用问题,还为企业级应用提供了更符合现代安全标准的认证方案。通过自动化的令牌管理和简洁的配置方式,开发者可以更专注于业务逻辑的实现,而无需担心底层认证机制的复杂性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00