Transitland Datastore 开源项目教程
1. 项目介绍
Transitland Datastore 是一个社区驱动的公共交通服务时间表和地图项目。它汇集了来自权威来源的数据,并允许社区成员和开发者贡献、编辑和修复数据。该项目旨在提供一个集中的数据源,通过简单的 Web API 进行查询和编辑。
Transitland Datastore 是一个基于 Ruby on Rails 的 Web 服务,后端使用 Postgres/PostGIS 数据库,并结合了异步的 Sidekiq 队列(由 Resque 支持)来运行 Ruby 和 Python 的数据导入库。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下软件:
- Ruby (建议版本 2.7 或更高)
- Rails (建议版本 6.0 或更高)
- PostgreSQL (建议版本 12 或更高)
- PostGIS (建议版本 3.0 或更高)
- Sidekiq (建议版本 6.0 或更高)
2.2 克隆项目
首先,克隆 Transitland Datastore 项目到本地:
git clone https://github.com/transitland/transitland-datastore.git
cd transitland-datastore
2.3 安装依赖
安装项目所需的 Ruby 依赖:
bundle install
2.4 配置数据库
创建并配置 PostgreSQL 数据库:
rails db:create
rails db:migrate
2.5 启动应用
启动 Rails 服务器:
rails server
启动 Sidekiq 队列:
bundle exec sidekiq
2.6 访问应用
打开浏览器,访问 http://localhost:3000,您将看到 Transitland Datastore 的 Web 界面。
3. 应用案例和最佳实践
3.1 数据导入
Transitland Datastore 支持从 GTFS (General Transit Feed Specification) 文件导入公共交通数据。您可以通过 API 或直接上传 GTFS 文件来导入数据。
3.2 数据查询
通过 Transitland Datastore 提供的 API,您可以查询公共交通服务的路线、站点、时间表等信息。例如,查询某个站点的所有路线:
curl -X GET "http://localhost:3000/api/v1/stops?onestop_id=s1"
3.3 数据编辑
社区成员可以通过 Web 界面或 API 对数据进行编辑和修复。例如,更新某个站点的名称:
curl -X PUT "http://localhost:3000/api/v1/stops/s1" -d '{"name": "New Station Name"}'
4. 典型生态项目
4.1 Transitland Atlas
Transitland Atlas 是一个可视化工具,用于展示 Transitland Datastore 中的公共交通数据。它提供了地图界面,用户可以直观地查看和分析公共交通网络。
4.2 Transitland v2 API
Transitland v2 API 是 Transitland Datastore 的升级版本,提供了更强大的功能和更好的性能。它支持更多的查询方式和数据格式,适合更复杂的应用场景。
4.3 Transitland Vector Tiles
Transitland Vector Tiles 是一个基于矢量瓦片的地图服务,用于在地图上展示公共交通数据。它提供了高性能的地图渲染能力,适合在移动设备和 Web 应用中使用。
通过这些生态项目,Transitland Datastore 构建了一个完整的公共交通数据生态系统,支持从数据收集、处理到展示的全流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00