Swift项目中GRPO训练采样重复问题的分析与解决
2025-05-31 15:03:49作者:毕习沙Eudora
问题背景
在Swift项目的多模态GRPO训练过程中,用户在使用8卡GPU(2卡部署,6卡训练)进行实验时,发现当设置num_generations为6时,每个prompt生成的6个输出中有3个是重复的。这种现象影响了训练数据的多样性,可能导致模型学习效果不佳。
技术细节分析
该问题出现在使用vllm 0.7.3和ms-swift 3.2.0版本进行多模态训练时。用户配置了以下关键参数:
- num_generations=6(期望每个prompt采样6次)
- temperature=1.2(适度的随机性设置)
- 使用vllm作为推理引擎
从技术实现角度看,当使用多GPU并行生成时,如果没有正确处理随机种子或采样策略,可能会导致不同GPU上的采样过程产生重复结果。
问题原因
经过开发团队调查,发现问题的根源在于:
- 随机种子处理不当,导致不同GPU上的采样过程使用了相同的随机序列
- 在多GPU环境下,采样策略没有充分考虑设备间的独立性
- 当num_return_sequences设置较大时(如10),重复问题更加明显
解决方案
开发团队通过以下方式解决了该问题:
- 修复了随机种子处理逻辑,确保每个GPU使用独立的随机序列
- 优化了采样策略,保证不同设备间的采样独立性
- 增强了多GPU环境下的生成多样性控制
验证结果
修复后,在相同配置下:
- 每个prompt生成的6个输出不再出现重复
- 即使将num_return_sequences设置为较大值(如10),也能保持较好的多样性
- 训练过程的稳定性和效果得到提升
最佳实践建议
对于使用Swift项目进行类似训练的用户,建议:
- 使用最新版本的代码库,确保包含相关修复
- 合理设置temperature参数,平衡生成多样性和质量
- 对于多GPU环境,注意监控生成结果的多样性
- 当需要大量生成样本时,可以适当增加temperature值
总结
Swift项目中GRPO训练的采样重复问题是一个典型的多GPU环境下随机性控制问题。通过开发团队的及时修复,确保了训练过程中生成样本的多样性,这对于强化学习训练的效果至关重要。用户在使用时应关注版本更新,并合理配置相关参数以获得最佳训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218