Swift项目中GRPO训练采样重复问题的分析与解决
2025-05-31 22:47:11作者:毕习沙Eudora
问题背景
在Swift项目的多模态GRPO训练过程中,用户在使用8卡GPU(2卡部署,6卡训练)进行实验时,发现当设置num_generations为6时,每个prompt生成的6个输出中有3个是重复的。这种现象影响了训练数据的多样性,可能导致模型学习效果不佳。
技术细节分析
该问题出现在使用vllm 0.7.3和ms-swift 3.2.0版本进行多模态训练时。用户配置了以下关键参数:
- num_generations=6(期望每个prompt采样6次)
- temperature=1.2(适度的随机性设置)
- 使用vllm作为推理引擎
从技术实现角度看,当使用多GPU并行生成时,如果没有正确处理随机种子或采样策略,可能会导致不同GPU上的采样过程产生重复结果。
问题原因
经过开发团队调查,发现问题的根源在于:
- 随机种子处理不当,导致不同GPU上的采样过程使用了相同的随机序列
- 在多GPU环境下,采样策略没有充分考虑设备间的独立性
- 当num_return_sequences设置较大时(如10),重复问题更加明显
解决方案
开发团队通过以下方式解决了该问题:
- 修复了随机种子处理逻辑,确保每个GPU使用独立的随机序列
- 优化了采样策略,保证不同设备间的采样独立性
- 增强了多GPU环境下的生成多样性控制
验证结果
修复后,在相同配置下:
- 每个prompt生成的6个输出不再出现重复
- 即使将num_return_sequences设置为较大值(如10),也能保持较好的多样性
- 训练过程的稳定性和效果得到提升
最佳实践建议
对于使用Swift项目进行类似训练的用户,建议:
- 使用最新版本的代码库,确保包含相关修复
- 合理设置temperature参数,平衡生成多样性和质量
- 对于多GPU环境,注意监控生成结果的多样性
- 当需要大量生成样本时,可以适当增加temperature值
总结
Swift项目中GRPO训练的采样重复问题是一个典型的多GPU环境下随机性控制问题。通过开发团队的及时修复,确保了训练过程中生成样本的多样性,这对于强化学习训练的效果至关重要。用户在使用时应关注版本更新,并合理配置相关参数以获得最佳训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249