Swift项目中GRPO训练采样重复问题的分析与解决
2025-05-31 22:47:11作者:毕习沙Eudora
问题背景
在Swift项目的多模态GRPO训练过程中,用户在使用8卡GPU(2卡部署,6卡训练)进行实验时,发现当设置num_generations为6时,每个prompt生成的6个输出中有3个是重复的。这种现象影响了训练数据的多样性,可能导致模型学习效果不佳。
技术细节分析
该问题出现在使用vllm 0.7.3和ms-swift 3.2.0版本进行多模态训练时。用户配置了以下关键参数:
- num_generations=6(期望每个prompt采样6次)
- temperature=1.2(适度的随机性设置)
- 使用vllm作为推理引擎
从技术实现角度看,当使用多GPU并行生成时,如果没有正确处理随机种子或采样策略,可能会导致不同GPU上的采样过程产生重复结果。
问题原因
经过开发团队调查,发现问题的根源在于:
- 随机种子处理不当,导致不同GPU上的采样过程使用了相同的随机序列
- 在多GPU环境下,采样策略没有充分考虑设备间的独立性
- 当num_return_sequences设置较大时(如10),重复问题更加明显
解决方案
开发团队通过以下方式解决了该问题:
- 修复了随机种子处理逻辑,确保每个GPU使用独立的随机序列
- 优化了采样策略,保证不同设备间的采样独立性
- 增强了多GPU环境下的生成多样性控制
验证结果
修复后,在相同配置下:
- 每个prompt生成的6个输出不再出现重复
- 即使将num_return_sequences设置为较大值(如10),也能保持较好的多样性
- 训练过程的稳定性和效果得到提升
最佳实践建议
对于使用Swift项目进行类似训练的用户,建议:
- 使用最新版本的代码库,确保包含相关修复
- 合理设置temperature参数,平衡生成多样性和质量
- 对于多GPU环境,注意监控生成结果的多样性
- 当需要大量生成样本时,可以适当增加temperature值
总结
Swift项目中GRPO训练的采样重复问题是一个典型的多GPU环境下随机性控制问题。通过开发团队的及时修复,确保了训练过程中生成样本的多样性,这对于强化学习训练的效果至关重要。用户在使用时应关注版本更新,并合理配置相关参数以获得最佳训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1